

Wn Documentation

Overview

This package provides an interface to wordnet data, from simple lookup
queries, to graph traversals, to more sophisticated algorithms and
metrics. Features include:

	Support for wordnets in the
WN-LMF [https://globalwordnet.github.io/schemas/] format

	A SQLite [https://sqlite.org] database backend for data
consistency and efficient queries

	Accurate modeling of Words, Senses, and Synsets

Quick Start

$ pip install wn

>>> import wn
>>> wn.download('ewn:2020')
>>> wn.synsets('coffee')
[Synset('ewn-04979718-n'), Synset('ewn-07945591-n'), Synset('ewn-07945759-n'), Synset('ewn-12683533-n')]

Contents

	Installation and Configuration
	Installing from PyPI

	The Data Directory

	Configuration

	Installing From Source

	Command Line Interface
	Global Options

	Subcommands

	download

	lexicons

	projects

	validate

	FAQ
	Is Wn related to the NLTK's nltk.corpus.wordnet module?

	Is Wn compatible with the NLTK's module?

	Where are the Lemma objects? What are Word and Sense objects?

	Where is the Princeton WordNet data?

	Why don't all wordnets share the same synsets?

	Why does Wn's database get so big?

Guides

	Working with Lexicons
	Terminology

	Lexicon and Project Specifiers

	Downloading Lexicons

	Adding Local Lexicons

	Listing Installed Lexicons

	Removing Lexicons

	WN-LMF Files, Packages, and Collections

	Basic Usage
	Primary Queries

	Secondary Queries

	Filtering by Language

	Filtering by Lexicon

	Interlingual Queries
	What are Interlingual Indices?

	Using Interlingual Indices

	Translating Words, Senses, and Synsets

	Cross-lingual Relation Traversal

	The Structure of a Wordnet
	Words, Senses, and Synsets

	Synset Relations

	Sense Relations

	Other Information

	Lemmatization and Normalization
	Lemmatization

	Alternative Forms in the Database

	Normalization

	Migrating from the NLTK
	Overview

	Equivalent Operations

Installation and Configuration

See also

This guide is for installing and configuring the Wn software. For
adding lexicons to the database, see Working with Lexicons.

Installing from PyPI

Install the latest release from PyPI [https://pypi.org/project/wn]:

pip install wn

To get the dependencies for the wn.web module, use the web
installation extra:

pip install wn[web]

The Data Directory

By default, Wn stores its data (such as downloaded LMF files and the
database file) in a .wn_data/ directory under the user's home
directory. This directory can be changed (see Configuration
below). Whenever Wn attempts to download a resource or access its
database, it will check for the existence of, and create if necessary,
this directory, the .wn_data/downloads/ subdirectory, and the
.wn_data/wn.db database file. The file system will look like
this:

.wn_data/
├── downloads
│ ├── ...
│ └── ...
└── wn.db

The ... entries in the downloads/ subdirectory represent the
files of resources downloaded from the web. Their filename is a hash
of the URL so that Wn can avoid downloading the same file twice.

Configuration

The wn.config object contains the paths Wn uses for local
storage and information about resources available on the web. To
change the directory Wn uses for storing data locally, modify the
wn.config.data_directory member:

import wn
wn.config.data_directory = '~/Projects/wn_data'

There are some things to note:

	The downloads directory and database path are always relative to the
data directory and cannot be changed directly.

	This change only affects subsequent operations, so any data in the
previous location will not be moved nor deleted.

	This change only affects the current session. If you want a script
or application to always use the new location, it must reset the
data directory each time it is initialized.

You can also add project information for remote resources. First you
add a project, with a project ID, full name, and language code. Then
you create one or more versions for that project with a version ID,
resource URL, and license information. This may be done either through
the wn.config object's
add_project() and
add_project_version() methods, or loaded
from a TOML [https://toml.io] file via the wn.config object's
load_index() method.

wn.config.add_project('ewn', 'English WordNet', 'en')
wn.config.add_project_version(
 'ewn', '2020',
 'https://en-word.net/static/english-wordnet-2020.xml.gz',
 'https://creativecommons.org/licenses/by/4.0/',
)

Installing From Source

If you wish to install the code from the source repository (e.g., to
get an unreleased feature or to contribute toward Wn's development),
clone the repository and use Flit [https://flit.readthedocs.io/] to
install:

$ git clone https://github.com/goodmami/wn.git
$ cd wn
$ flit install

Developers of Wn may want to use the --symlink option which makes
the install "editable" (subsequent edits to the source code will be
reflected without having to reinstall):

$ flit install --symlink

Command Line Interface

Some of Wn's functionality is exposed via the command line.

Global Options

	
-d DIR, --dir DIR

	Change to use DIR as the data directory prior to invoking any
commands.

Subcommands

download

Download and add projects to the database given one or more project
specifiers or URLs.

$ python -m wn download oewn:2021 omw:1.4 cili
$ python -m wn download https://en-word.net/static/english-wordnet-2021.xml.gz

	
--index FILE

	Use the index at FILE to resolve project specifiers.

$ python -m wn download --index my-index.toml mywn

	
--no-add

	Download and cache the remote file, but don't add it to the
database.

lexicons

The lexicons subcommand lets you quickly see what is installed:

$ python -m wn lexicons
omw-en 1.4 [en] OMW English Wordnet based on WordNet 3.0
omw-sk 1.4 [sk] Slovak WordNet
omw-pl 1.4 [pl] plWordNet
omw-is 1.4 [is] IceWordNet
omw-zsm 1.4 [zsm] Wordnet Bahasa (Malaysian)
omw-sl 1.4 [sl] sloWNet
omw-ja 1.4 [ja] Japanese Wordnet
...

	
-l LG, --lang LG

	

	
--lexicon SPEC

	The --lang or --lexicon option can help you narrow down
the results:

$ python -m wn lexicons --lang en
oewn 2021 [en] Open English WordNet
omw-en 1.4 [en] OMW English Wordnet based on WordNet 3.0
$ python -m wn lexicons --lexicon "omw-*"
omw-en 1.4 [en] OMW English Wordnet based on WordNet 3.0
omw-sk 1.4 [sk] Slovak WordNet
omw-pl 1.4 [pl] plWordNet
omw-is 1.4 [is] IceWordNet
omw-zsm 1.4 [zsm] Wordnet Bahasa (Malaysian)

projects

The projects subcommand lists all known projects in Wn's
index. This is helpful to see what is available for downloading.

$ python -m wn projects
ic cili 1.0 [---] Collaborative Interlingual Index
ic oewn 2022 [en] Open English WordNet
ic oewn 2021 [en] Open English WordNet
ic ewn 2020 [en] Open English WordNet
ic ewn 2019 [en] Open English WordNet
i- odenet 1.4 [de] Open German WordNet
ic odenet 1.3 [de] Open German WordNet
ic omw 1.4 [mul] Open Multilingual Wordnet
ic omw-en 1.4 [en] OMW English Wordnet based on WordNet 3.0
...

validate

Given a path to a WN-LMF XML file, check the file for structural
problems and print a report.

$ python -m wn validate english-wordnet-2021.xml

	
--select CHECKS

	Run the checks with the given comma-separated list of check codes
or categories.

$ python -m wn validate --select E W201 W204 deWordNet.xml

	
--output-file FILE

	Write the report to FILE as a JSON object instead of printing the
report to stdout.

FAQ

Is Wn related to the NLTK's nltk.corpus.wordnet module?

Only in spirit. There was an effort to develop the NLTK [https://www.nltk.org/]'s module as a
standalone package (see https://github.com/nltk/wordnet/), but
development had slowed. Wn has the same broad goals and a similar API
as that standalone package, but fundamental architectural differences
demanded a complete rewrite, so Wn was created as a separate
project. With approval from the other package's maintainer, Wn
acquired the wn [https://pypi.org/project/wn] project on PyPI and
can be seen as its successor.

Is Wn compatible with the NLTK's module?

The API is intentionally similar, but not exactly the same (for
instance see the next question), and there are differences in the ways
that results are retrieved, particularly for non-English wordnets. See
Migrating from the NLTK for more information. Also see
Where is the Princeton WordNet data?.

Where are the Lemma objects? What are Word and Sense objects?

Unlike the original WNDB [https://wordnet.princeton.edu/documentation/wndb5wn] data format of the original WordNet, the
WN-LMF [https://globalwordnet.github.io/schemas/] XML format grants words (called lexical entries in WN-LMF
and a Word object in Wn) and word senses
(Sense in Wn) explicit, first-class status alongside
synsets. While senses are essentially links between words and
synsets, they may contain metadata and be the source or target of
sense relations, so in some ways they are more like nodes than edges
when the wordnet is viewed as a graph. The NLTK [https://www.nltk.org/]'s module, using
the WNDB format, combines the information of a word and a sense into a
single object called a Lemmas. Wn also has an unrelated concept
called a lemma(), but it is merely the canonical form
of a word.

Where is the Princeton WordNet data?

The original English wordnet, named simply WordNet but often
referred to as the Princeton WordNet to better distinguish it from
other projects, is specifically the data distributed by Princeton in
the WNDB [https://wordnet.princeton.edu/documentation/wndb5wn] format. The Open Multilingual Wordnet [http://github.com/omwn] (OMW)
packages an export of the WordNet data as the OMW English Wordnet
based on WordNet 3.0 which is used by Wn (with the lexicon ID
omw-en). It also has a similar export for WordNet 3.1 data
(omw-en31). Both of these are highly compatible with the original
data and can be used as drop-in replacements.

Prior to Wn version 0.9 (and, correspondingly, prior to the OMW
data [https://github.com/omwn/omw-data] version 1.4), the pwn:3.0 and pwn:3.1 English wordnets
distributed by OMW were incorrectly called the Princeton WordNet
(for WordNet 3.0 and 3.1, respectively). From Wn version 0.9 (and from
version 1.4 of the OMW data), these are called the OMW English
Wordnet based on WordNet 3.0/3.1 (omw-en:1.4 and
omw-en31:1.4, respectively). These lexicons are intentionally
compatible with the original WordNet data, and the 1.4 versions are
even more compatible than the previous pwn:3.0 and pwn:3.1
lexicons, so it is strongly recommended to use them over the previous
versions.

Why don't all wordnets share the same synsets?

The Open Multilingual Wordnet [http://github.com/omwn] (OMW) contains wordnets for
many languages created using the expand methodology [VOSSEN1998],
where non-English wordnets provide words on top of the English
wordnet's synset structure. This allows new wordnets to be built in
much less time than starting from scratch, but with a few drawbacks,
such as that words cannot be added if they do not have a synset in the
English wordnet, and that it is difficult to version the wordnets
independently (e.g., for reproducibility of experiments involving
wordnet data) as all are interconnected. Wn, therefore, creates new
synsets for each wordnet added to its database, and synsets then
specify which resource they belong to. Queries can specify which
resources may be examined. Also see Interlingual Queries.

Why does Wn's database get so big?

The OMW English Wordnet based on WordNet 3.0 takes about 114 MiB of
disk space in Wn's database, which is only about 8 MiB more than it
takes as a WN-LMF [https://globalwordnet.github.io/schemas/] XML file. The NLTK [https://www.nltk.org/], however, uses the obsolete
WNDB [https://wordnet.princeton.edu/documentation/wndb5wn] format which is more compact, requiring only 35 MiB of disk
space. The difference with the Open Multilingual Wordnet 1.4 is more
striking: it takes about 659 MiB of disk space in the database, but
only 49 MiB in the NLTK. Part of the difference here is that the OMW
files in the NLTK are simple tab-separated-value files listing only
the words added to each synset for each language. In addition, Wn
creates new synsets for each wordnet added (see the previous
question). One more reason is that Wn creates various indexes in the
database for efficient lookup.

	VOSSEN1998

	Piek Vossen. 1998. Introduction to EuroWordNet. Computers and the Humanities, 32(2): 73–89.

Working with Lexicons

Terminology

In Wn, the following terminology is used:

	lexicon

	An inventory of words, senses, synsets, relations, etc. that
share a namespace (i.e., that can refer to each other).

	wordnet

	A group of lexicons (but usually just one).

	resource

	A file containing lexicons.

	package

	A directory containing a resource and optionally some
metadata files.

	collection

	A directory containing packages and optionally some
metadata files.

	project

	A general term for a resource, package, or collection,
particularly pertaining to its creation, maintenance, and
distribution.

In general, each resource contains one lexicon. For large projects
like the Open English WordNet [https://en-word.net], that lexicon is also a wordnet on
its own. For a collection like the Open Multilingual Wordnet [https://github.com/omwn/], most
lexicons do not include relations as they are instead expected to use
those from the OMW's included English wordnet, which is derived from
the Princeton WordNet [https://wordnet.princeton.edu/]. As such, a wordnet for these sub-projects is
best thought of as the grouping of the lexicon with the lexicon
providing the relations.

Lexicon and Project Specifiers

Wn uses lexicon specifiers to deal with the possibility of having
multiple lexicons and multiple versions of lexicons loaded in the same
database. The specifiers are the joining of a lexicon's name (ID) and
version, delimited by :. Here are the possible forms:

* -- any/all lexicons
id -- the most recently added lexicon with the given id
id:* -- all lexicons with the given id
id:version -- the lexicon with the given id and version
*:version -- all lexicons with the given version

For example, if ewn:2020 was installed followed by ewn:2019,
then ewn would specify the 2019 version, ewn:* would
specify both versions, and ewn:2020 would specify the 2020
version.

The same format is used for project specifiers, which refer to
projects as defined in Wn's index. In most cases the project specifier
is the same as the lexicon specifier (e.g., ewn:2020 refers both
to the project to be downloaded and the lexicon that is installed),
but sometimes it is not. The 1.4 release of the Open Multilingual
Wordnet [https://github.com/omwn/], for instance, has the project specifier omw:1.4 but it
installs a number of lexicons with their own lexicon specifiers
(omw-zsm:1.4, omw-cmn:1.4, etc.). When only an id is given
(e.g., ewn), a project specifier gets the first version listed
in the index (in the default index, conventionally, the first version
is the latest release).

Downloading Lexicons

Use wn.download() to download lexicons from the web given
either an indexed project specifier or the URL of a resource, package,
or collection.

>>> import wn
>>> wn.download('odenet') # get the latest Open German WordNet
>>> wn.download('odenet:1.3') # get the 1.3 version
>>> # download from a URL
>>> wn.download('https://github.com/omwn/omw-data/releases/download/v1.4/omw-1.4.tar.xz')

The project specifier is only used to retrieve information from Wn's
index. The lexicon IDs of the corresponding resource files are what is
stored in the database.

Adding Local Lexicons

Lexicons can be added from local files with wn.add():

>>> wn.add('~/data/omw-1.4/omw-nb/omw-nb.xml')

Or with the parent directory as a package:

>>> wn.add('~/data/omw-1.4/omw-nb/')

Or with the grandparent directory as a collection (installing all
packages contained by the collection):

>>> wn.add('~/data/omw-1.4/')

Or from a compressed archive of one of the above:

>>> wn.add('~/data/omw-1.4/omw-nb/omw-nb.xml.xz')
>>> wn.add('~/data/omw-1.4/omw-nb.tar.xz')
>>> wn.add('~/data/omw-1.4.tar.xz')

Listing Installed Lexicons

If you wish to see which lexicons have been added to the database,
wn.lexicons() returns the list of wn.Lexicon
objects that describe each one.

>>> for lex in wn.lexicons():
... print(f'{lex.id}:{lex.version}\t{lex.label}')
...
omw-en:1.4 OMW English Wordnet based on WordNet 3.0
omw-nb:1.4 Norwegian Wordnet (Bokmål)
odenet:1.3 Offenes Deutsches WordNet
ewn:2020 English WordNet
ewn:2019 English WordNet

Removing Lexicons

Lexicons can be removed from the database with wn.remove():

>>> wn.remove('omw-nb:1.4')

Note that this removes a single lexicon and not a project, so if, for
instance, you've installed a multi-lexicon project like omw, you
will need to remove each lexicon individually or use a star specifier:

>>> wn.remove('omw-*:1.4')

WN-LMF Files, Packages, and Collections

Wn can handle projects with 3 levels of structure:

	WN-LMF XML files

	WN-LMF packages

	WN-LMF collections

WN-LMF XML Files

A WN-LMF XML file is a file with a .xml extension that is valid
according to the WN-LMF specification [https://github.com/globalwordnet/schemas/].

WN-LMF Packages

If one needs to distribute metadata or additional files along with
WN-LMF XML file, a WN-LMF package allows them to include the files in
a directory. The directory should contain exactly one .xml file,
which is the WN-LMF XML file. In addition, it may contain additional
files and Wn will recognize three of them:

	LICENSE (.txt | .md | .rst)

	the full text of the license

	README (.txt | .md | .rst)

	the project README

	citation.bib

	a BibTeX file containing academic citations for the project

omw-sq/
├── omw-sq.xml
├── LICENSE.txt
└── README.md

WN-LMF Collections

In some cases a project may manage multiple resources and distribute
them as a collection. A collection is a directory containing
subdirectories which are WN-LMF packages. The collection may contain
its own README, LICENSE, and citation files which describe the project
as a whole.

omw-1.4/
├── omw-sq
│ ├── oms-sq.xml
│ ├── LICENSE.txt
│ └── README.md
├── omw-lt
│ ├── citation.bib
│ ├── LICENSE
│ └── omw-lt.xml
├── ...
├── citation.bib
├── LICENSE
└── README.md

Basic Usage

See also

This document covers the basics of querying wordnets, filtering
results, and performing secondary queries on the results. For
adding, removing, or inspecting lexicons, see Working with Lexicons. For
more information about interlingual queries, see
Interlingual Queries.

For the most basic queries, Wn provides several module functions for
retrieving words, senses, and synsets:

>>> import wn
>>> wn.words('pike')
[Word('ewn-pike-n')]
>>> wn.senses('pike')
[Sense('ewn-pike-n-03311555-04'), Sense('ewn-pike-n-07795351-01'), Sense('ewn-pike-n-03941974-01'), Sense('ewn-pike-n-03941726-01'), Sense('ewn-pike-n-02563739-01')]
>>> wn.synsets('pike')
[Synset('ewn-03311555-n'), Synset('ewn-07795351-n'), Synset('ewn-03941974-n'), Synset('ewn-03941726-n'), Synset('ewn-02563739-n')]

Once you start working with multiple wordnets, these simple queries
may return more than desired:

>>> wn.words('pike')
[Word('ewn-pike-n'), Word('wnja-n-66614')]
>>> wn.words('chat')
[Word('ewn-chat-n'), Word('ewn-chat-v'), Word('frawn-lex14803'), Word('frawn-lex21897')]

You can specify which language or lexicon you wish to query:

>>> wn.words('pike', lang='ja')
[Word('wnja-n-66614')]
>>> wn.words('chat', lexicon='frawn')
[Word('frawn-lex14803'), Word('frawn-lex21897')]

But it might be easier to create a Wordnet object and use
it for queries:

>>> wnja = wn.Wordnet(lang='ja')
>>> wnja.words('pike')
[Word('wnja-n-66614')]
>>> frawn = wn.Wordnet(lexicon='frawn')
>>> frawn.words('chat')
[Word('frawn-lex14803'), Word('frawn-lex21897')]

In fact, the simple queries above implicitly create such a
Wordnet object, but one that includes all installed
lexicons.

Primary Queries

The queries shown above are "primary" queries, meaning they are the
first step in a user's interaction with a wordnet. Operations
performed on the resulting objects are then secondary
queries. Primary queries optionally take several fields for
filtering the results, namely the word form and part of
speech. Synsets may also be filtered by an interlingual index (ILI).

Searching for Words

The wn.words() function returns a list of Word
objects that match the given word form or part of speech:

>>> wn.words('pencil')
[Word('ewn-pencil-n'), Word('ewn-pencil-v')]
>>> wn.words('pencil', pos='v')
[Word('ewn-pencil-v')]

Calling the function without a word form will return all words in the
database:

>>> len(wn.words())
311711
>>> len(wn.words(pos='v'))
29419
>>> len(wn.words(pos='v', lexicon='ewn'))
11595

If you know the word identifier used by a lexicon, you can retrieve
the word directly with the wn.word() function. Identifiers are
guaranteed to be unique within a single lexicon, but not across
lexicons, so it's best to call this function from an instantiated
Wordnet object or with the lexicon parameter
specified. If multiple words are found when querying multiple
lexicons, only the first is returned.

>>> wn.word('ewn-pencil-n', lexicon='ewn')
Word('ewn-pencil-n')

Searching for Senses

The wn.senses() and wn.sense() functions behave
similarly to wn.words() and wn.word(), except that
they return matching Sense objects.

>>> wn.senses('plow', pos='n')
[Sense('ewn-plow-n-03973894-01')]
>>> wn.sense('ewn-plow-v-01745745-01')
Sense('ewn-plow-v-01745745-01')

Senses represent a relationship between a Word and a
Synset. Seen as an edge between nodes, senses are often
given less prominence than words or synsets, but they are the natural
locus of several interesting features such as sense relations (e.g.,
for derived words) and the natural level of representation for
translations to other languages.

Searching for Synsets

The wn.synsets() and wn.synset() functions are like
those above but allow the ili parameter for filtering by
interlingual index, which is useful in interlingual queries:

>>> wn.synsets('scepter')
[Synset('ewn-14467142-n'), Synset('ewn-07282278-n')]
>>> wn.synset('ewn-07282278-n').ili
'i74874'
>>> wn.synsets(ili='i74874')
[Synset('ewn-07282278-n'), Synset('wnja-07267573-n'), Synset('frawn-07267573-n')]

Secondary Queries

Once you have gotten some results from a primary query, you can
perform operations on the Word, Sense, or
Synset objects to get at further information in the
wordnet.

Exploring Words

Here are some of the things you can do with Word objects:

>>> w = wn.words('goose')[0]
>>> w.pos # part of speech
'n'
>>> w.forms() # other word forms (e.g., irregular inflections)
['goose', 'geese']
>>> w.lemma() # canonical form
'goose'
>>> w.derived_words()
[Word('ewn-gosling-n'), Word('ewn-goosy-s'), Word('ewn-goosey-s')]
>>> w.senses()
[Sense('ewn-goose-n-01858313-01'), Sense('ewn-goose-n-10177319-06'), Sense('ewn-goose-n-07662430-01')]
>>> w.synsets()
[Synset('ewn-01858313-n'), Synset('ewn-10177319-n'), Synset('ewn-07662430-n')]

Since translations of a word into another language depend on the sense
used, Word.translate returns a dictionary
mapping each sense to words in the target language:

>>> for sense, ja_words in w.translate(lang='ja').items():
... print(sense, ja_words)
...
Sense('ewn-goose-n-01858313-01') [Word('wnja-n-1254'), Word('wnja-n-33090'), Word('wnja-n-38995')]
Sense('ewn-goose-n-10177319-06') []
Sense('ewn-goose-n-07662430-01') [Word('wnja-n-1254')]

Exploring Senses

Compared to Word and Synset objects, there
are relatively few operations available on Sense
objects. Sense relations and translations, however, are important
operations on senses.

>>> s = wn.senses('dark', pos='n')[0]
>>> s.word() # each sense links to a single word
Word('ewn-dark-n')
>>> s.synset() # each sense links to a single synset
Synset('ewn-14007000-n')
>>> s.get_related('antonym')
[Sense('ewn-light-n-14006789-01')]
>>> s.get_related('derivation')
[Sense('ewn-dark-a-00273948-01')]
>>> s.translate(lang='fr') # translation returns a list of senses
[Sense('frawn-lex52992--13983515-n')]
>>> s.translate(lang='fr')[0].word().lemma()
'obscurité'

Exploring Synsets

Many of the operations people care about happen on synsets, such as
hierarchical relations and metrics.

>>> ss = wn.synsets('hound', pos='n')[0]
>>> ss.senses()
[Sense('ewn-hound-n-02090203-01'), Sense('ewn-hound_dog-n-02090203-02')]
>>> ss.words()
[Word('ewn-hound-n'), Word('ewn-hound_dog-n')]
>>> ss.lemmas()
['hound', 'hound dog']
>>> ss.definition()
'any of several breeds of dog used for hunting typically having large drooping ears'
>>> ss.hypernyms()
[Synset('ewn-02089774-n')]
>>> ss.hypernyms()[0].lemmas()
['hunting dog']
>>> len(ss.hyponyms())
20
>>> ss.hyponyms()[0].lemmas()
['Afghan', 'Afghan hound']
>>> ss.max_depth()
15
>>> ss.shortest_path(wn.synsets('dog', pos='n')[0])
[Synset('ewn-02090203-n'), Synset('ewn-02089774-n'), Synset('ewn-02086723-n')]
>>> ss.translate(lang='fr') # translation returns a list of synsets
[Synset('frawn-02087551-n')]
>>> ss.translate(lang='fr')[0].lemmas()
['chien', 'chien de chasse']

Filtering by Language

The lang parameter of wn.words(), wn.senses(),
wn.synsets(), and Wordnet allows a single BCP 47 [https://en.wikipedia.org/wiki/IETF_language_tag] language
code. When this parameter is used, only entries in the specified
language will be returned.

>>> import wn
>>> wn.words('chat')
[Word('ewn-chat-n'), Word('ewn-chat-v'), Word('frawn-lex14803'), Word('frawn-lex21897')]
>>> wn.words('chat', lang='fr')
[Word('frawn-lex14803'), Word('frawn-lex21897')]

If a language code not used by any lexicon is specified, a
wn.Error is raised.

Filtering by Lexicon

The lexicon parameter of wn.words(), wn.senses(),
wn.synsets(), and Wordnet take a string of
space-delimited lexicon specifiers. Entries in a lexicon whose ID matches one of
the lexicon specifiers will be returned. For these, the following
rules are used:

	A full id:version string (e.g., ewn:2020) selects a specific
lexicon

	Only a lexicon id (e.g., ewn) selects the most recently
added lexicon with that ID

	A star * may be used to match any lexicon; a star may not
include a version

>>> wn.words('chat', lexicon='ewn:2020')
[Word('ewn-chat-n'), Word('ewn-chat-v')]
>>> wn.words('chat', lexicon='wnja')
[]
>>> wn.words('chat', lexicon='wnja frawn')
[Word('frawn-lex14803'), Word('frawn-lex21897')]

Interlingual Queries

This guide explains how interlingual queries work within Wn. To get
started, you'll need at least two lexicons that use interlingual
indices (ILIs). For this guide, we'll use the Open English WordNet
(oewn:2021), the Open German WordNet (odenet:1.4), also
known as OdeNet, and the Japanese wordnet (omw-ja:1.4).

>>> import wn
>>> wn.download('oewn:2021')
>>> wn.download('odenet:1.4')
>>> wn.download('omw-ja:1.4')

We will query these wordnets with the following Wordnet
objects:

>>> en = wn.Wordnet('oewn:2021')
>>> de = wn.Wordnet('odenet:1.4')

The object for the Japanese wordnet will be discussed and created
below, in Cross-lingual Relation Traversal.

What are Interlingual Indices?

It is common for users of the Princeton WordNet [https://wordnet.princeton.edu/] to refer to synsets by their WNDB [https://wordnet.princeton.edu/documentation/wndb5wn] offset and
type, but this is problematic because the offset is a byte-offset in
the wordnet data files and it will differ for wordnets in other
languages and even between versions of the same wordnet. Interlingual
indices (ILIs) address this issue by providing stable identifiers for
concepts, whether for a synset across versions of a wordnet or across
languages.

The idea of ILIs was proposed by [Vossen99] and it came to fruition
with the release of the Collaborative Interlingual Index (CILI;
[Bond16]). CILI therefore represents an instance of, and a namespace
for, ILIs. There could, in theory, be alternative indexes for
particular domains (e.g., names of people or places), but currently
there is only the one.

As an example, the synset for apricot (fruit) in WordNet 3.0 is
07750872-n, but it is 07766848-n in WordNet 3.1. In OdeNet
1.4, which is not released in the WNDB format and therefore doesn't
use offsets at all, it is 13235-n for the equivalent word
(Aprikose). However, all three use the same ILI: i77784.

Not every synset is guaranteed to be associated with an ILI, and some
have the special value in indicates that the project is proposing
that a new ILI be created in the CILI project for the concept, but
until that happens it cannot be used in interlingual queries.

	Vossen99

	Vossen, Piek, Wim Peters, and Julio Gonzalo.
"Towards a universal index of meaning."
In Proceedings of ACL-99 workshop, Siglex-99, standardizing lexical resources, pp. 81-90.
University of Maryland, 1999.

	Bond16

	Bond, Francis, Piek Vossen, John Philip McCrae, and Christiane Fellbaum.
"CILI: the Collaborative Interlingual Index."
In Proceedings of the 8th Global WordNet Conference (GWC), pp. 50-57. 2016.

Using Interlingual Indices

For synsets that have an associated ILI, you can retrieve it via the
wn.Synset.ili accessor:

>>> apricot = en.synsets('apricot')[1]
>>> apricot.ili
ILI('i77784')

From this object you can get various properties of the ILI, such as
the ID as a string, its status, and its definition, but if you have
not added CILI to Wn's database it will not be very informative:

>>> apricot.ili.id
'i77784'
>>> apricot.ili.status
'presupposed'
>>> apricot.ili.definition() is None
True

The presupposed status means that the ILI was in use by a lexicon,
but there is no other source of truth for the index. CILI can be
downloaded just like a lexicon:

>>> wn.download('cili:1.0')

Now the status and definition should be more useful:

>>> apricot.ili.status
'active'
>>> apricot.ili.definition()
'downy yellow to rosy-colored fruit resembling a small peach'

ILI IDs may be used to lookup synsets:

>>> Aprikose = de.synsets(ili=apricot.ili.id)[0]
>>> Aprikose.lemmas()
['Marille', 'Aprikose']

Translating Words, Senses, and Synsets

Rather than manually inserting the ILI IDs into Wn's lookup functions
as shown above, Wn provides the wn.Synset.translate() method to
make it easier:

>>> apricot.translate(lexicon='odenet:1.4')
[Synset('odenet-13235-n')]

The method returns a list for two reasons: first, it's not guaranteed
that the target lexicon has only one synset with the ILI and, second,
you can translate to more than one lexicon at a time.

Sense objects also have a translate()
method, returning a list of senses instead of synsets:

>>> de_senses = apricot.senses()[0].translate(lexicon='odenet:1.4')
>>> [s.word().lemma() for s in de_senses]
['Marille', 'Aprikose']

Word have a translate() method, too, but
it works a bit differently. Since each word may be part of multiple
synsets, the method returns a mapping of each word sense to the list
of translated words:

>>> result = en.words('apricot')[0].translate(lexicon='odenet:1.4')
>>> for sense, de_words in result.items():
... print(sense, [w.lemma() for w in de_words])
...
Sense('oewn-apricot__1.20.00..') []
Sense('oewn-apricot__1.13.00..') ['Marille', 'Aprikose']
Sense('oewn-apricot__1.07.00..') ['lachsrosa', 'lachsfarbig', 'in Lachs', 'lachsfarben', 'lachsrot', 'lachs']

The three senses above are for apricot as a tree, a fruit, and a
color. OdeNet does not have a synset for apricot trees, or it has one
not associated with the appropriate ILI, and therefore it could not
translate any words for that sense.

Cross-lingual Relation Traversal

ILIs have a second use in Wn, which is relation traversal for wordnets
that depend on other lexicons, i.e., those created with the expand
methodology. These wordnets, such as many of those in the Open
Multilingual Wordnet [https://github.com/omwn/], do not include
synset relations on their own as they were built using the English
WordNet as their taxonomic scaffolding. Trying to load such a lexicon
when the lexicon it requires is not added to the database presents a
warning to the user:

>>> ja = wn.Wordnet('omw-ja:1.4')
[...] WnWarning: lexicon dependencies not available: omw-en:1.4
>>> ja.expanded_lexicons()
[]

Warning

Do not rely on the presence of a warning to determine if the
lexicon has its expand lexicon loaded. Python's default warning
filter may only show the warning the first time it is
encountered. Instead, inspect wn.Wordnet.expanded_lexicons()
to see if it is non-empty.

When a dependency is unmet, Wn only issues a warning, not an error,
and you can continue to use the lexicon as it is, but it won't be
useful for exploring relations such as hypernyms and hyponyms:

>>> anzu = ja.synsets(ili='i77784')[0]
>>> anzu.lemmas()
['アンズ', 'アプリコット', '杏']
>>> anzu.hypernyms()
[]

One way to resolve this issue is to install the lexicon it requires:

>>> wn.download('omw-en:1.4')
>>> ja = wn.Wordnet('omw-ja:1.4') # no warning
>>> ja.expanded_lexicons()
[<Lexicon omw-en:1.4 [en]>]

Wn will detect the dependency and load omw-en:1.4 as the expand
lexicon for omw-ja:1.4 when the former is in the database. You may
also specify an expand lexicon manually, even one that isn't the
specified dependency:

>>> ja = wn.Wordnet('omw-ja:1.4', expand='oewn:2021') # no warning
>>> ja.expanded_lexicons()
[<Lexicon oewn:2021 [en]>]

In this case, the Open English WordNet is an actively-developed fork
of the lexicon that omw-ja:1.4 depends on, and it should contain
all the relations, so you'll see little difference between using it
and omw-en:1.4. This works because the relations are found using
ILIs and not synset offsets. You may still prefer to use the specified
dependency if you have strict compatibility needs, such as for
experiment reproducibility and/or compatibility with the NLTK [https://nltk.org]. Using some other lexicon as the expand lexicon
may yield very different results. For instance, odenet:1.4 is much
smaller than the English wordnets and has fewer relations, so it would
not be a good substitute for omw-ja:1.4's expand lexicon.

When an appropriate expand lexicon is loaded, relations between
synsets, such as hypernyms, are more likely to be present:

>>> anzu = ja.synsets(ili='i77784')[0] # recreate the synset object
>>> anzu.hypernyms()
[Synset('omw-ja-07705931-n')]
>>> anzu.hypernyms()[0].lemmas()
['果物']
>>> anzu.hypernyms()[0].translate(lexicon='oewn:2021')[0].lemmas()
['edible fruit']

The Structure of a Wordnet

A wordnet is an online lexicon which is organized by concepts.

The basic unit of a wordnet is the synonym set (synset), a group of words that all refer to the
same concept. Words and synsets are linked by means of conceptual-semantic relations to form the
structure of wordnet.

Words, Senses, and Synsets

We all know that words are the basic building blocks of languages, a word is built up with two parts,
its form and its meaning, but in natural languages, the word form and word meaning are not in an elegant
one-to-one match, one word form may connect to many different meanings, so hereforth, we need senses,
to work as the unit of word meanings, for example, the word bank has at least two senses:

	bank1: financial institution, like City Bank;

	bank2: sloping land, like river bank;

Since synsets are group of words sharing the same concept, bank1and bank2are members of
two different synsets, although they have the same word form.

On the other hand, different word forms may also convey the same concept, such as cab and taxi,
these word forms with the same concept are grouped together into one synset.

 Lemmatization and Normalization

Lemmatization and Normalization

Wn provides two methods for expanding queries: lemmatization and
normalization. Wn also has a setting that allows alternative forms stored in the database to be included in
queries.

See also

The wn.morphy module is a basic English lemmatizer included
with Wn.

Lemmatization

When querying a wordnet with wordforms from natural language text, it
is important to be able to find entries for inflected forms as the
database generally contains only lemmatic forms, or lemmas (or
lemmata, if you prefer irregular plurals).

>>> import wn
>>> en = wn.Wordnet('oewn:2021')
>>> en.words('plurals')
[]
>>> en.words('plural')
[Word('oewn-plural-a'), Word('oewn-plural-n')]

Lemmas are sometimes called citation forms or dictionary forms as
they are often used as the head words in dictionary entries. In
Natural Language Processing (NLP), lemmatization is a technique
where a possibly inflected word form is transformed to yield a
lemma. In Wn, this concept is generalized somewhat to mean a
transformation that yields a form matching wordforms stored in the
database. For example, the English word sparrows is the plural
inflection of sparrow, while the word leaves is ambiguous between
the plural inflection of the nouns leaf and leave and the
3rd-person singular inflection of the verb leave.

For tasks where high-accuracy is needed, wrapping the wordnet queries
with external tools that handle tokenization, lemmatization, and
part-of-speech tagging will likely yield the best results as this
method can make use of word context. That is, something like this:

for lemma, pos in fancy_shmancy_analysis(corpus):
 synsets = w.synsets(lemma, pos=pos)

For modest needs, however, Wn provides a way to integrate basic
lemmatization directly into the queries.

Lemmatization in Wn works as follows: if a wn.Wordnet object
is instantiated with a lemmatizer argument, then queries involving
wordforms (e.g., wn.Wordnet.words(), wn.Wordnet.senses(),
wn.Wordnet.synsets()) will first lemmatize the wordform and then
check all resulting wordforms and parts of speech against the
database as successive queries.

Lemmatization Functions

The lemmatizer argument of wn.Wordnet is a callable that
takes two string arguments: (1) the original wordform, and (2) a
part-of-speech or None. It returns a dictionary mapping
parts-of-speech to sets of lemmatized wordforms. The signature is as
follows:

lemmatizer(s: str, pos: Optional[str]) -> Dict[Optional[str], Set[str]]

The part-of-speech may be used by the function to determine which
morphological rules to apply. If the given part-of-speech is
None, then it is not specified and any rule may apply. A
lemmatizer that only deinflects should not change any specified
part-of-speech, but this is not a requirement, and a function could be
provided that undoes derivational morphology (e.g., democratic →
democracy).

Querying With Lemmatization

As the needs of lemmatization differs from one language to another, Wn
does not provide a lemmatizer by default, and therefore it is
unavailable to the convenience functions wn.words(),
wn.senses(), and wn.synsets(). A lemmatizer can be added
to a wn.Wordnet object. For example, using wn.morphy:

>>> import wn
>>> from wn.morphy import Morphy
>>> en = wn.Wordnet('oewn:2021', lemmatizer=Morphy())
>>> en.words('sparrows')
[Word('oewn-sparrow-n')]
>>> en.words('leaves')
[Word('oewn-leave-v'), Word('oewn-leaf-n'), Word('oewn-leave-n')]

Querying Without Lemmatization

When lemmatization is not used, inflected terms may not return any
results:

>>> en = wn.Wordnet('oewn:2021')
>>> en.words('sparrows')
[]

Depending on the lexicon, there may be situations where results are
returned for inflected lemmas, such as when the inflected form is
lexicalized as its own entry:

>>> en.words('glasses')
[Word('oewn-glasses-n')]

Or if the lexicon lists the inflected form as an alternative form. For
example, the English Wordnet lists irregular inflections as
alternative forms:

>>> en.words('lemmata')
[Word('oewn-lemma-n')]

See below for excluding alternative forms from such queries.

Alternative Forms in the Database

A lexicon may include alternative forms in addition to lemmas for each
word, and by default these are included in queries. What exactly is
included as an alternative form depends on the lexicon. The English
Wordnet, for example, adds irregular inflections (or "exceptional
forms"), while the Japanese Wordnet includes the same word in multiple
orthographies (original, hiragana, katakana, and two romanizations).
For the English Wordnet, this means that you might get basic
lemmatization for irregular forms only:

>>> en = wn.Wordnet('oewn:2021')
>>> en.words('learnt', pos='v')
[Word('oewn-learn-v')]
>>> en.words('learned', pos='v')
[]

If this is undesirable, the alternative forms can be excluded from
queries with the search_all_forms parameter:

>>> en = wn.Wordnet('oewn:2021', search_all_forms=False)
>>> en.words('learnt', pos='v')
[]
>>> en.words('learned', pos='v')
[]

Normalization

While lemmatization deals with morphological variants of words,
normalization handles minor orthographic variants. Normalized forms,
however, may be invalid as wordforms in the target language, and as
such they are only used behind the scenes for query expansion and not
presented to users. For instance, a user might attempt to look up
résumé in the English wordnet, but the wordnet only contains the
form without diacritics: resume. With strict string matching, the
entry would not be found using the wordform in the query. By
normalizing the query word, the entry can be found. Similarly in the
Spanish wordnet, soñar (to dream) and sonar (to ring) are two
different words. A user who types soñar likely does not want to get
results for sonar, but one who types sonar may be a non-Spanish
speaker who is unaware of the missing diacritic or does not have an
input method that allows them to type the diacritic, so this query
would return both entries by matching against the normalized forms in
the database. Wn handles all of these use cases.

When a lexicon is added to the database, potentially two wordforms are
inserted for every one in the lexicon: the original wordform and a
normalized form. When querying against the database, the original
query string is first compared with the original wordforms and, if
normalization is enabled, with the normalized forms in the database as
well. If this first attempt yields no results and if normalization is
enabled, the query string is normalized and tried again.

Normalization Functions

The normalized form is obtained from a normalizer function, passed
as an argument to wn.Wordnet, that takes a single string
argument and returns a string. That is, a function with the following
signature:

normalizer(s: str) -> str

While custom normalizer functions could be used, in practice the
choice is either the default normalizer or None. The default
normalizer works by downcasing the string and performing NFKD [https://en.wikipedia.org/wiki/Unicode_equivalence#Normal_forms]
normalization to remove diacritics. If the normalized form is the same
as the original, only the original is inserted into the database.

Examples of normalization

	Original Form

	Normalized Form

	résumé

	resume

	soñar

	sonar

	San José

	san jose

	ハラペーニョ

	ハラヘーニョ

Querying With Normalization

By default, normalization is enabled when a wn.Wordnet is
created. Enabling normalization does two things: it allows queries to
check the original wordform in the query against the normalized forms
in the database and, if no results are returned in the first step, it
allows the queried wordform to be normalized as a back-off technique.

>>> en = wn.Wordnet('oewn:2021')
>>> en.words('résumé')
[Word('oewn-resume-n'), Word('oewn-resume-v')]
>>> es = wn.Wordnet('omw-es:1.4')
>>> es.words('soñar')
[Word('omw-es-soñar-v')]
>>> es.words('sonar')
[Word('omw-es-sonar-v'), Word('omw-es-soñar-v')]

Note

Users may supply a custom normalizer function to the
wn.Wordnet object, but currently this is discouraged as
the result is unlikely to match normalized forms in the database
and there is not yet a way to customize the normalization of forms
added to the database.

Querying Without Normalization

Normalization can be disabled by passing None as the
argument of the normalizer parameter of wn.Wordnet. The
queried wordform will not be checked against normalized forms in the
database and neither will it be normalized as a back-off technique.

>>> en = wn.Wordnet('oewn:2021', normalizer=None)
>>> en.words('résumé')
[]
>>> es = wn.Wordnet('omw-es:1.4', normalizer=None)
>>> es.words('soñar')
[Word('omw-es-soñar-v')]
>>> es.words('sonar')
[Word('omw-es-sonar-v')]

Note

It is not possible to disable normalization for the convenience
functions wn.words(), wn.senses(), and
wn.synsets().

 Migrating from the NLTK

Migrating from the NLTK

This guide is for users of the NLTK [https://www.nltk.org/]'s
nltk.corpus.wordnet module who are migrating to Wn. It is not
guaranteed that Wn will produce the same results as the NLTK's module,
but with some care its behavior can be very similar.

Overview

One important thing to note is that Wn will search all wordnets in the
database by default where the NLTK would only search the English.

>>> from nltk.corpus import wordnet as nltk_wn
>>> nltk_wn.synsets('chat') # only English
>>> nltk_wn.synsets('chat', lang='fra') # only French
>>> import wn
>>> wn.synsets('chat') # all wordnets
>>> wn.synsets('chat', lang='fr') # only French

With Wn it helps to create a wn.Wordnet object to pre-filter
the results by language or lexicon.

>>> en = wn.Wordnet('omw-en:1.4')
>>> en.synsets('chat') # only the OMW English Wordnet

Equivalent Operations

The following table lists equivalent API calls for the NLTK's wordnet
module and Wn assuming the respective modules have been instantiated
(in separate Python sessions) as follows:

NLTK:

>>> from nltk.corpus import wordnet as wn
>>> ss = wn.synsets("chat", pos="v")[0]

Wn:

>>> import wn
>>> en = wn.Wordnet('omw-en:1.4')
>>> ss = en.synsets("chat", pos="v")[0]

Primary Queries

	NLTK

	Wn

	wn.langs()

	[lex.language for lex in wn.lexicons()]

	wn.lemmas("chat")

	–

	–

	en.words("chat")

	–

	en.senses("chat")

	wn.synsets("chat")

	en.synsets("chat")

	wn.synsets("chat", pos="v")

	en.synsets("chat", pos="v")

	wn.all_synsets()

	en.synsets()

	wn.all_synsets(pos="v")

	en.synsets(pos="v")

Synsets – Basic

	NLTK

	Wn

	ss.lemmas()

	–

	–

	ss.senses()

	–

	ss.words()

	ss.lemmas_names()

	ss.lemmas()

	ss.definition()

	ss.definition()

	ss.examples()

	ss.examples()

	ss.pos()

	ss.pos

Synsets – Relations

	NLTK

	Wn

	ss.hypernyms()

	ss.get_related("hypernym")

	ss.instance_hypernyms()

	ss.get_related("instance_hypernym")

	ss.hypernyms() + ss.instance_hypernyms()

	ss.hypernyms()

	ss.hyponyms()

	ss.get_related("hyponym")

	ss.member_holonyms()

	ss.get_related("holo_member")

	ss.member_meronyms()

	ss.get_related("mero_member")

	ss.closure(lambda x: x.hypernyms())

	ss.closure("hypernym")

Synsets – Taxonomic Structure

	NLTK

	Wn

	ss.min_depth()

	ss.min_depth()

	ss.max_depth()

	ss.max_depth()

	ss.hypernym_paths()

	[list(reversed([ss] + p)) for p in ss.hypernym_paths()]

	ss.common_hypernyms(ss)

	ss.common_hypernyms(ss)

	ss.lowest_common_hypernyms(ss)

	ss.lowest_common_hypernyms(ss)

	ss.shortest_path_distance(ss)

	len(ss.shortest_path(ss))

(these tables are incomplete)

 wn

wn

Wordnet Interface.

Project Management Functions

	
wn.download(project_or_url, add=True, progress_handler=<class 'wn.util.ProgressBar'>)

	Download the resource specified by project_or_url.

First the URL of the resource is determined and then, depending on
the parameters, the resource is downloaded and added to the
database. The function then returns the path of the cached file.

If project_or_url starts with 'http://' or 'https://', then
it is taken to be the URL for the resource. Otherwise,
project_or_url is taken as a project specifier and the URL is taken from a matching entry
in Wn's project index. If no project matches the specifier,
wn.Error is raised.

If the URL has been downloaded and cached before, the cached file
is used. Otherwise the URL is retrieved and stored in the cache.

If the add paramter is True (default), the downloaded
resource is added to the database.

>>> wn.download('ewn:2020')
Added ewn:2020 (English WordNet)

The progress_handler parameter takes a subclass of
wn.util.ProgressHandler. An instance of the class will be
created, used, and closed by this function.

	Parameters

	
	project_or_url (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	add (bool [https://docs.python.org/3/library/functions.html#bool]) –

	progress_handler (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Type [https://docs.python.org/3/library/typing.html#typing.Type][wn.util.ProgressHandler]]) –

	Return type

	pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	
wn.add(source, progress_handler=<class 'wn.util.ProgressBar'>)

	Add the LMF file at source to the database.

The file at source may be gzip-compressed or plain text XML.

>>> wn.add('english-wordnet-2020.xml')
Added ewn:2020 (English WordNet)

The progress_handler parameter takes a subclass of
wn.util.ProgressHandler. An instance of the class will be
created, used, and closed by this function.

	Parameters

	
	source (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) –

	progress_handler (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Type [https://docs.python.org/3/library/typing.html#typing.Type][wn.util.ProgressHandler]]) –

	Return type

	None

	
wn.remove(lexicon, progress_handler=<class 'wn.util.ProgressBar'>)

	Remove lexicon(s) from the database.

The lexicon argument is a lexicon specifier. Note that this removes a lexicon and not a
project, so the lexicons of projects containing multiple lexicons
will need to be removed individually or, if applicable, a star
specifier.

The progress_handler parameter takes a subclass of
wn.util.ProgressHandler. An instance of the class will be
created, used, and closed by this function.

>>> wn.remove('ewn:2019') # removes a single lexicon
>>> wn.remove('*:1.3+omw') # removes all lexicons with version 1.3+omw

	Parameters

	
	lexicon (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	progress_handler (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Type [https://docs.python.org/3/library/typing.html#typing.Type][wn.util.ProgressHandler]]) –

	Return type

	None

	
wn.export(lexicons, destination, version='1.0')

	Export lexicons from the database to a WN-LMF file.

More than one lexicon may be exported in the same file, subject to
these conditions:

	identifiers on wordnet entities must be unique in all lexicons

	lexicons extensions may not be exported with their dependents

>>> w = wn.Wordnet(lexicon='cmnwn zsmwn')
>>> wn.export(w.lexicons(), 'cmn-zsm.xml')

	Parameters

	
	lexicons (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][wn.Lexicon]) – sequence of wn.Lexicon objects

	destination (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) – path to the destination file

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – LMF version string

	Return type

	None

	
wn.projects()

	Return the list of indexed projects.

This returns the same dictionaries of information as
wn.config.get_project_info, but for all indexed
projects.

Example

>>> infos = wn.projects()
>>> len(infos)
36
>>> infos[0]['label']
'Open English WordNet'

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict]]

Wordnet Query Functions

	
wn.word(id, *, lexicon=None, lang=None)

	Return the word with id in lexicon.

This will create a Wordnet object using the lang and
lexicon arguments. The id argument is then passed to the
Wordnet.word() method.

>>> wn.word('ewn-cell-n')
Word('ewn-cell-n')

	Parameters

	
	id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	lexicon (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	lang (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	wn.Word

	
wn.words(form=None, pos=None, *, lexicon=None, lang=None)

	Return the list of matching words.

This will create a Wordnet object using the lang and
lexicon arguments. The remaining arguments are passed to the
Wordnet.words() method.

>>> len(wn.words())
282902
>>> len(wn.words(pos='v'))
34592
>>> wn.words(form="scurry")
[Word('ewn-scurry-n'), Word('ewn-scurry-v')]

	Parameters

	
	form (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	pos (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	lexicon (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	lang (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Word]

	
wn.sense(id, *, lexicon=None, lang=None)

	Return the sense with id in lexicon.

This will create a Wordnet object using the lang and
lexicon arguments. The id argument is then passed to the
Wordnet.sense() method.

>>> wn.sense('ewn-flutter-v-01903884-02')
Sense('ewn-flutter-v-01903884-02')

	Parameters

	
	id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	lexicon (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	lang (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	wn.Sense

	
wn.senses(form=None, pos=None, *, lexicon=None, lang=None)

	Return the list of matching senses.

This will create a Wordnet object using the lang and
lexicon arguments. The remaining arguments are passed to the
Wordnet.senses() method.

>>> len(wn.senses('twig'))
3
>>> wn.senses('twig', pos='n')
[Sense('ewn-twig-n-13184889-02')]

	Parameters

	
	form (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	pos (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	lexicon (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	lang (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Sense]

	
wn.synset(id, *, lexicon=None, lang=None)

	Return the synset with id in lexicon.

This will create a Wordnet object using the lang and
lexicon arguments. The id argument is then passed to the
Wordnet.synset() method.

>>> wn.synset('ewn-03311152-n')
Synset('ewn-03311152-n')

	Parameters

	
	id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	lexicon (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	lang (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	wn.Synset

	
wn.synsets(form=None, pos=None, ili=None, *, lexicon=None, lang=None)

	Return the list of matching synsets.

This will create a Wordnet object using the lang and
lexicon arguments. The remaining arguments are passed to the
Wordnet.synsets() method.

>>> len(wn.synsets('couch'))
4
>>> wn.synsets('couch', pos='v')
[Synset('ewn-00983308-v')]

	Parameters

	
	form (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	pos (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	ili (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	lexicon (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	lang (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Synset]

	
wn.ili(id, *, lexicon=None, lang=None)

	Return the interlingual index with id.

This will create a Wordnet object using the lang and
lexicon arguments. The id argument is then passed to the
Wordnet.ili() method.

>>> wn.ili(id='i1234')
ILI('i1234')
>>> wn.ili(id='i1234').status
'presupposed'

	Parameters

	
	id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	lexicon (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	lang (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	wn.ILI

	
wn.ilis(status=None, *, lexicon=None, lang=None)

	Return the list of matching interlingual indices.

This will create a Wordnet object using the lang and
lexicon arguments. The remaining arguments are passed to the
Wordnet.ilis() method.

>>> len(wn.ilis())
120071
>>> len(wn.ilis(status='proposed'))
2573
>>> wn.ilis(status='proposed')[-1].definition()
'the neutrino associated with the tau lepton.'
>>> len(wn.ilis(lang='de'))
13818

	Parameters

	
	status (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	lexicon (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	lang (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.ILI]

	
wn.lexicons(*, lexicon=None, lang=None)

	Return the lexicons matching a language or lexicon specifier.

Example

>>> wn.lexicons(lang='en')
[<Lexicon ewn:2020 [en]>, <Lexicon pwn:3.0 [en]>]

	Parameters

	
	lexicon (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	lang (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Lexicon]

The Wordnet Class

	
class wn.Wordnet(lexicon=None, *, lang=None, expand=None, normalizer=<function normalize_form>, lemmatizer=None, search_all_forms=True)

	Class for interacting with wordnet data.

A wordnet object acts essentially as a filter by first selecting
matching lexicons and then searching only within those lexicons
for later queries. On instantiation, a lang argument is a BCP
47 [https://en.wikipedia.org/wiki/IETF_language_tag] language code that restricts the selected lexicons to those
whose language matches the given code. A lexicon argument is a
space-separated list of lexicon specifiers that more directly
selects lexicons by their ID and version; this is preferable when
there are multiple lexicons in the same language or multiple
version with the same ID.

Some wordnets were created by translating the words from a larger
wordnet, namely the Princeton WordNet, and then relying on the
larger wordnet for structural relations. An expand argument is a
second space-separated list of lexicon specifiers which are used
for traversing relations, but not as the results of
queries. Setting expand to an empty string (expand='')
disables expand lexicons.

The normalizer argument takes a callable that normalizes word
forms in order to expand the search. The default function
downcases the word and removes diacritics via NFKD [https://en.wikipedia.org/wiki/Unicode_equivalence#Normal_forms] normalization
so that, for example, searching for san josé in the English
WordNet will find the entry for San Jose. Setting normalizer
to None disables normalization and forces exact-match
searching.

The lemmatizer argument may be None, which is the
default and disables lemmatizer-based query expansion, or a
callable that takes a word form and optional part of speech and
returns base forms of the original word. To support lemmatizers
that use the wordnet for instantiation, such as wn.morphy,
the lemmatizer may be assigned to the lemmatizer attribute
after creation.

If the search_all_forms argument is True (the
default), searches of word forms consider all forms in the
lexicon; if False, only lemmas are searched. Non-lemma
forms may include, depending on the lexicon, morphological
exceptions, alternate scripts or spellings, etc.

	Parameters

	
	lexicon (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	lang (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	expand (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	normalizer (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[str [https://docs.python.org/3/library/stdtypes.html#str]], str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	lemmatizer (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[str [https://docs.python.org/3/library/stdtypes.html#str], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]], Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]]]]]) –

	search_all_forms (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
lemmatizer

	A lemmatization function or None.

	
word(id)

	Return the first word in this wordnet with identifier id.

	Parameters

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	wn.Word

	
words(form=None, pos=None)

	Return the list of matching words in this wordnet.

Without any arguments, this function returns all words in the
wordnet's selected lexicons. A form argument restricts the
words to those matching the given word form, and pos
restricts words by their part of speech.

	Parameters

	
	form (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	pos (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Word]

	
sense(id)

	Return the first sense in this wordnet with identifier id.

	Parameters

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	wn.Sense

	
senses(form=None, pos=None)

	Return the list of matching senses in this wordnet.

Without any arguments, this function returns all senses in the
wordnet's selected lexicons. A form argument restricts the
senses to those whose word matches the given word form, and
pos restricts senses by their word's part of speech.

	Parameters

	
	form (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	pos (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Sense]

	
synset(id)

	Return the first synset in this wordnet with identifier id.

	Parameters

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	wn.Synset

	
synsets(form=None, pos=None, ili=None)

	Return the list of matching synsets in this wordnet.

Without any arguments, this function returns all synsets in
the wordnet's selected lexicons. A form argument restricts
synsets to those whose member words match the given word
form. A pos argument restricts synsets to those with the
given part of speech. An ili argument restricts synsets to
those with the given interlingual index; generally this should
select a unique synset within a single lexicon.

	Parameters

	
	form (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	pos (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	ili (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Synset]

	
ili(id)

	Return the first ILI in this wordnet with identifer id.

	Parameters

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	wn.ILI

	
ilis(status=None)

	Return the list of ILIs in this wordnet.

If status is given, only return ILIs with a matching status.

	Parameters

	status (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.ILI]

	
lexicons()

	Return the list of lexicons covered by this wordnet.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Lexicon]

	
expanded_lexicons()

	Return the list of expand lexicons for this wordnet.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Lexicon]

	
describe()

	Return a formatted string describing the lexicons in this wordnet.

Example

>>> oewn = wn.Wordnet('oewn:2021')
>>> print(oewn.describe())
Primary lexicons:
 oewn:2021
 Label : Open English WordNet
 URL : https://github.com/globalwordnet/english-wordnet
 License: https://creativecommons.org/licenses/by/4.0/
 Words : 163161 (a: 8386, n: 123456, r: 4481, s: 15231, v: 11607)
 Senses : 211865
 Synsets: 120039 (a: 7494, n: 84349, r: 3623, s: 10727, v: 13846)
 ILIs : 120039

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

The Word Class

	
class wn.Word(id, pos, forms, _lexid=0, _id=0, _wordnet=None)

	A class for words (also called lexical entries) in a wordnet.

	Parameters

	
	id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	pos (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	forms (List [https://docs.python.org/3/library/typing.html#typing.List][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]], int [https://docs.python.org/3/library/functions.html#int]]]) –

	_lexid (int [https://docs.python.org/3/library/functions.html#int]) –

	_id (int [https://docs.python.org/3/library/functions.html#int]) –

	_wordnet (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Wordnet]) –

	
id

	The identifier used within a lexicon.

	
pos

	The part of speech of the Word.

	
lemma()

	Return the canonical form of the word.

Example

>>> wn.words('wolves')[0].lemma()
'wolf'

	Return type

	wn.Form

	
forms()

	Return the list of all encoded forms of the word.

Example

>>> wn.words('wolf')[0].forms()
['wolf', 'wolves']

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Form]

	
senses()

	Return the list of senses of the word.

Example

>>> wn.words('zygoma')[0].senses()
[Sense('ewn-zygoma-n-05292350-01')]

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Sense]

	
synsets()

	Return the list of synsets of the word.

Example

>>> wn.words('addendum')[0].synsets()
[Synset('ewn-06411274-n')]

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Synset]

	
metadata()

	Return the word's metadata.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
derived_words()

	Return the list of words linked through derivations on the senses.

Example

>>> wn.words('magical')[0].derived_words()
[Word('ewn-magic-n'), Word('ewn-magic-n')]

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Word]

	
translate(lexicon=None, *, lang=None)

	Return a mapping of word senses to lists of translated words.

	Parameters

	
	lexicon (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – if specified, translate to words in the target lexicon(s)

	lang (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – if specified, translate to words with the language code

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][wn.Sense, List [https://docs.python.org/3/library/typing.html#typing.List][wn.Word]]

Example

>>> w = wn.words('water bottle', pos='n')[0]
>>> for sense, words in w.translate(lang='ja').items():
... print(sense, [jw.lemma() for jw in words])
...
Sense('ewn-water_bottle-n-04564934-01') ['水筒']

The Form Class

	
class wn.Form

	The return value of Word.lemma() and the members of the list
returned by Word.forms() are Form objects. These are
a basic subclass of Python's str [https://docs.python.org/3/library/stdtypes.html#str] class with an additional
attribute, script, and methods pronunciations() and
tags(). Form objects without any specified script behave
exactly as a regular string (they are equal and hash to the same
value), but if two Form objects are compared and they have
different script values, then they are unequal and hash
differently, even if the string itself is identical. When comparing
a Form object to a regular string, the script value is ignored.

>>> inu = wn.words('犬', lexicon='wnja')[0]
>>> inu.forms()[3]
'いぬ'
>>> inu.forms()[3].script
'hira'

The script is often unspecified (i.e., None) and this
carries the implicit meaning that the form uses the canonical
script for the word's language or wordnet, whatever it may be.

	
script

	The script of the word form. This should be an ISO 15924 [https://en.wikipedia.org/wiki/ISO_15924] code, or None.

	
pronunciations()

	Return the list of Pronunciation objects.

	
tags()

	Return the list of Tag objects.

The Pronunciation Class

	
class wn.Pronunciation(value, variety=None, notation=None, phonemic=True, audio=None)

	A class for word form pronunciations.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	variety (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	notation (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	phonemic (bool [https://docs.python.org/3/library/functions.html#bool]) –

	audio (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
value

	The encoded pronunciation.

	
variety

	The language variety this pronunciation belongs to.

	
notation

	The notation used to encode the pronunciation. For example: the
International Phonetic Alphabet (IPA).

	
phonemic

	True when the encoded pronunciation is a generalized
phonemic description, or False for more precise
phonetic transcriptions.

	
audio

	A URI to an associated audio file.

The Tag Class

	
class wn.Tag(tag, category)

	A general-purpose tag class for word forms.

	Parameters

	
	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	category (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
tag

	The text value of the tag.

	
category

	The category, or kind, of the tag.

The Sense Class

	
class wn.Sense(id, entry_id, synset_id, _lexid=0, _id=0, _wordnet=None)

	Class for modeling wordnet senses.

	Parameters

	
	id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	entry_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	synset_id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	_lexid (int [https://docs.python.org/3/library/functions.html#int]) –

	_id (int [https://docs.python.org/3/library/functions.html#int]) –

	_wordnet (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Wordnet]) –

	
id

	The identifier used within a lexicon.

	
word()

	Return the word of the sense.

Example

>>> wn.senses('spigot')[0].word()
Word('pwn-spigot-n')

	Return type

	wn.Word

	
synset()

	Return the synset of the sense.

Example

>>> wn.senses('spigot')[0].synset()
Synset('pwn-03325088-n')

	Return type

	wn.Synset

	
examples()

	Return the list of examples for the sense.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
lexicalized()

	Return True if the sense is lexicalized.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
adjposition()

	Return the adjective position of the sense.

Values include "a" (attributive), "p"
(predicative), and "ip" (immediate
postnominal). Note that this is only relevant for adjectival
senses. Senses for other parts of speech, or for adjectives
that are not annotated with this feature, will return
None.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
frames()

	Return the list of subcategorization frames for the sense.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
counts()

	Return the corpus counts stored for this sense.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Count]

	
metadata()

	Return the sense's metadata.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
relations(*args)

	Return a mapping of relation names to lists of senses.

One or more relation names may be given as positional
arguments to restrict the relations returned. If no such
arguments are given, all relations starting from the sense
are returned.

See get_related() for getting a flat list of related
senses.

	Parameters

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][wn.Sense]]

	
get_related(*args)

	Return a list of related senses.

One or more relation types should be passed as arguments which
determine the kind of relations returned.

Example

>>> physics = wn.senses('physics', lexicon='ewn')[0]
>>> for sense in physics.get_related('has_domain_topic'):
... print(sense.word().lemma())
...
coherent
chaotic
incoherent

	Parameters

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Sense]

	
get_related_synsets(*args)

	Return a list of related synsets.

	Parameters

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Synset]

	
closure(*args)

	
	Parameters

	
	self (wn._core.T) –

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][wn._core.T]

	
relation_paths(*args, end=None)

	
	Parameters

	
	self (wn._core.T) –

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	end (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][wn._core.T]) –

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][List [https://docs.python.org/3/library/typing.html#typing.List][wn._core.T]]

	
translate(lexicon=None, *, lang=None)

	Return a list of translated senses.

	Parameters

	
	lexicon (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – if specified, translate to senses in the target lexicon(s)

	lang (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – if specified, translate to senses with the language code

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Sense]

Example

>>> en = wn.senses('petiole', lang='en')[0]
>>> pt = en.translate(lang='pt')[0]
>>> pt.word().lemma()
'pecíolo'

The Count Class

	
class wn.Count(value, _id=0)

	A count of sense occurrences in some corpus.

Some wordnets store computed counts of senses across some corpus or
corpora. This class models those counts. It is a subtype of
int [https://docs.python.org/3/library/functions.html#int] with one additional method, metadata(), which
may be used to give information about the source of the count (if
provided by the wordnet).

	Parameters

	_id (int [https://docs.python.org/3/library/functions.html#int]) –

	
metadata()

	Return the count's metadata.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

The Synset Class

	
class wn.Synset(id, pos, ili=None, _lexid=0, _id=0, _wordnet=None)

	Class for modeling wordnet synsets.

	Parameters

	
	id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	pos (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	ili (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	_lexid (int [https://docs.python.org/3/library/functions.html#int]) –

	_id (int [https://docs.python.org/3/library/functions.html#int]) –

	_wordnet (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Wordnet]) –

	
id

	The identifier used within a lexicon.

	
pos

	The part of speech of the Synset.

	
ili

	The interlingual index of the Synset.

	
definition()

	Return the first definition found for the synset.

Example

>>> wn.synsets('cartwheel', pos='n')[0].definition()
'a wheel that has wooden spokes and a metal rim'

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
examples()

	Return the list of examples for the synset.

Example

>>> wn.synsets('orbital', pos='a')[0].examples()
['"orbital revolution"', '"orbital velocity"']

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
senses()

	Return the list of sense members of the synset.

Example

>>> wn.synsets('umbrella', pos='n')[0].senses()
[Sense('ewn-umbrella-n-04514450-01')]

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Sense]

	
lexicalized()

	Return True if the synset is lexicalized.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
lexfile()

	Return the lexicographer file name for this synset, if any.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
metadata()

	Return the synset's metadata.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
words()

	Return the list of words linked by the synset's senses.

Example

>>> wn.synsets('exclusive', pos='n')[0].words()
[Word('ewn-scoop-n'), Word('ewn-exclusive-n')]

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Word]

	
lemmas()

	Return the list of lemmas of words for the synset.

Example

>>> wn.synsets('exclusive', pos='n')[0].words()
['scoop', 'exclusive']

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Form]

	
hypernyms()

	Return the list of synsets related by any hypernym relation.

Both the hypernym and instance_hypernym relations are
traversed.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Synset]

	
hyponyms()

	Return the list of synsets related by any hyponym relation.

Both the hyponym and instance_hyponym relations are
traversed.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Synset]

	
holonyms()

	Return the list of synsets related by any holonym relation.

Any of the following relations are traversed: holonym,
holo_location, holo_member, holo_part,
holo_portion, holo_substance.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Synset]

	
meronyms()

	Return the list of synsets related by any meronym relation.

Any of the following relations are traversed: meronym,
mero_location, mero_member, mero_part,
mero_portion, mero_substance.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Synset]

	
relations(*args)

	Return a mapping of relation names to lists of synsets.

One or more relation names may be given as positional
arguments to restrict the relations returned. If no such
arguments are given, all relations starting from the synset
are returned.

See get_related() for getting a flat list of related
synsets.

Example

>>> button_rels = wn.synsets('button')[0].relations()
>>> for relname, sslist in button_rels.items():
... print(relname, [ss.lemmas() for ss in sslist])
...
hypernym [['fixing', 'holdfast', 'fastener', 'fastening']]
hyponym [['coat button'], ['shirt button']]

	Parameters

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][wn.Synset]]

	
get_related(*args)

	Return the list of related synsets.

One or more relation names may be given as positional
arguments to restrict the relations returned. If no such
arguments are given, all relations starting from the synset
are returned.

This method does not preserve the relation names that lead to
the related synsets. For a mapping of relation names to
related synsets, see relations().

Example

>>> fulcrum = wn.synsets('fulcrum')[0]
>>> [ss.lemmas() for ss in fulcrum.get_related()]
[['pin', 'pivot'], ['lever']]

	Parameters

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Synset]

	
closure(*args)

	
	Parameters

	
	self (wn._core.T) –

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][wn._core.T]

	
relation_paths(*args, end=None)

	
	Parameters

	
	self (wn._core.T) –

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	end (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][wn._core.T]) –

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][List [https://docs.python.org/3/library/typing.html#typing.List][wn._core.T]]

	
translate(lexicon=None, *, lang=None)

	Return a list of translated synsets.

	Parameters

	
	lexicon (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – if specified, translate to synsets in the target lexicon(s)

	lang (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – if specified, translate to synsets with the language code

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Synset]

Example

>>> es = wn.synsets('araña', lang='es')[0]
>>> en = es.translate(lexicon='ewn')[0]
>>> en.lemmas()
['spider']

	
hypernym_paths(simulate_root=False)

	Shortcut for wn.taxonomy.hypernym_paths().

	
min_depth(simulate_root=False)

	Shortcut for wn.taxonomy.min_depth().

	
max_depth(simulate_root=False)

	Shortcut for wn.taxonomy.max_depth().

	
shortest_path(other, simulate_root=False)

	Shortcut for wn.taxonomy.shortest_path().

	
common_hypernyms(other, simulate_root=False)

	Shortcut for wn.taxonomy.common_hypernyms().

	
lowest_common_hypernyms(other, simulate_root=False)

	Shortcut for wn.taxonomy.lowest_common_hypernyms().

The ILI Class

	
class wn.ILI(id, status, definition=None, _id=0)

	A class for interlingual indices.

	Parameters

	
	id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	status (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	definition (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	_id (int [https://docs.python.org/3/library/functions.html#int]) –

	
id

	The interlingual index identifier. Unlike id attributes for
Word, Sense, and Synset, ILI
identifers may be None (see the proposed status).

	
status

	The known status of the interlingual index. Loading an
interlingual index into the database provides the following
explicit, authoritative status values:

	active – the ILI is in use

	provisional – the ILI is being staged for permanent
inclusion

	deprecated – the ILI is, or should be, no longer in use

Without an interlingual index loaded, ILIs present in loaded
lexicons get an implicit, temporary status from the following:

	presupposed – a synset uses the ILI, assuming it exists
in an ILI file

	proposed – a synset introduces a concept not yet in an
ILI and is suggesting that one should be added for it in the
future

	
definition()

	
	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
metadata()

	Return the ILI's metadata.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

The Lexicon Class

	
class wn.Lexicon(id, label, language, email, license, version, url=None, citation=None, logo=None, _id=0)

	A class representing a wordnet lexicon.

	Parameters

	
	id (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	label (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	language (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	email (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	license (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	url (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	citation (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	logo (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	_id (int [https://docs.python.org/3/library/functions.html#int]) –

	
id

	The lexicon's identifier.

	
label

	The full name of lexicon.

	
language

	The BCP 47 language code of lexicon.

	
email

	The email address of the wordnet maintainer.

	
license

	The URL or name of the wordnet's license.

	
version

	The version string of the resource.

	
url

	The project URL of the wordnet.

	
citation

	The canonical citation for the project.

	
logo

	A URL or path to a project logo.

	
metadata()

	Return the lexicon's metadata.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
specifier()

	Return the id:version lexicon specifier.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
modified()

	Return True if the lexicon has local modifications.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
requires()

	Return the lexicon dependencies.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][wn.Lexicon]]

	
extends()

	Return the lexicon this lexicon extends, if any.

If this lexicon is not an extension, return None.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][wn.Lexicon]

	
extensions(depth=1)

	Return the list of lexicons extending this one.

By default, only direct extensions are included. This is
controlled by the depth parameter, which if you view
extensions as children in a tree where the current lexicon is
the root, depth=1 are the immediate extensions. Increasing
this number gets extensions of extensions, or setting it to a
negative number gets all "descendant" extensions.

	Parameters

	depth (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.Lexicon]

	
describe(full=True)

	Return a formatted string describing the lexicon.

The full argument (default: True) may be set to
False to omit word and sense counts.

Also see: Wordnet.describe()

	Parameters

	full (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

The wn.config Object

Wn's data storage and retrieval can be configured through the
wn.config object.

See also

Installation and Configuration describes how to configure Wn using the
wn.config instance.

	
wn.config = <wn._config.WNConfig object>

	

It is an instance of the WNConfig class, which is
defined in a non-public module and is not meant to be instantiated
directly. Configuration should occur through the single
wn.config instance.

	
class wn._config.WNConfig

	
	
data_directory

	The file system directory where Wn's data is stored.

	
database_path

	The path to the database file.

	
allow_multithreading

	If set to True, the database connection may be shared
across threads. In this case, it is the user's responsibility to
ensure that multiple threads don't try to write to the database
at the same time. The default is False.

	
downloads_directory

	The file system directory where downloads are cached.

	
add_project(id, type='wordnet', label=None, language=None, license=None, error=None)

	Add a new wordnet project to the index.

	Parameters

	
	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – short identifier of the project

	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – project type (default 'wordnet')

	label (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – full name of the project

	language (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – BCP 47 [https://en.wikipedia.org/wiki/IETF_language_tag] language code of the resource

	license (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – link or name of the project's default license

	error (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – if set, the error message to use when the project
is accessed

	Return type

	None

	
add_project_version(id, version, url=None, error=None, license=None)

	Add a new resource version for a project.

Exactly one of url or error must be specified.

	Parameters

	
	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – short identifier of the project

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – version string of the resource

	url (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – space-separated list of web addresses for the resource

	license (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – link or name of the resource's license; if not
given, the project's default license will be used.

	error (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – if set, the error message to use when the project
is accessed

	Return type

	None

	
get_project_info(arg)

	Return information about an indexed project version.

If the project has been downloaded and cached, the "cache"
key will point to the path of the cached file, otherwise its
value is None.

	Parameters

	arg (str [https://docs.python.org/3/library/stdtypes.html#str]) – a project specifier

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict]

Example

>>> info = wn.config.get_project_info('oewn:2021')
>>> info['label']
'Open English WordNet'

	
get_cache_path(url)

	Return the path for caching url.

Note that in general this is just a path operation and does
not signify that the file exists in the file system.

	Parameters

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	
update(data)

	Update the configuration with items in data.

Items are only inserted or replaced, not deleted. If a project
index is provided in the "index" key, then either the
project must not already be indexed or any project fields
(label, language, or license) that are specified must be equal
to the indexed project.

	Parameters

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	Return type

	None

	
load_index(path)

	Load and update with the project index at path.

The project index is a TOML [https://toml.io] file containing project and
version information. For example:

[ewn]
 label = "Open English WordNet"
 language = "en"
 license = "https://creativecommons.org/licenses/by/4.0/"
 [ewn.versions.2019]
 url = "https://en-word.net/static/english-wordnet-2019.xml.gz"
 [ewn.versions.2020]
 url = "https://en-word.net/static/english-wordnet-2020.xml.gz"

	Parameters

	path (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) –

	Return type

	None

Exceptions

	
exception wn.Error

	Generic error class for invalid wordnet operations.

	
exception wn.DatabaseError

	Error class for issues with the database.

	
exception wn.WnWarning

	Generic warning class for dubious worndet operations.

 wn.constants

wn.constants

Constants and literals used in wordnets.

Synset Relations

	
wn.constants.SYNSET_RELATIONS

	
	agent

	also

	attribute

	be_in_state

	causes

	classified_by

	classifies

	co_agent_instrument

	co_agent_patient

	co_agent_result

	co_instrument_agent

	co_instrument_patient

	co_instrument_result

	co_patient_agent

	co_patient_instrument

	co_result_agent

	co_result_instrument

	co_role

	direction

	domain_region

	domain_topic

	exemplifies

	entails

	eq_synonym

	has_domain_region

	has_domain_topic

	is_exemplified_by

	holo_location

	holo_member

	holo_part

	holo_portion

	holo_substance

	holonym

	hypernym

	hyponym

	in_manner

	instance_hypernym

	instance_hyponym

	instrument

	involved

	involved_agent

	involved_direction

	involved_instrument

	involved_location

	involved_patient

	involved_result

	involved_source_direction

	involved_target_direction

	is_caused_by

	is_entailed_by

	location

	manner_of

	mero_location

	mero_member

	mero_part

	mero_portion

	mero_substance

	meronym

	similar

	other

	patient

	restricted_by

	restricts

	result

	role

	source_direction

	state_of

	target_direction

	subevent

	is_subevent_of

	antonym

	feminine

	has_feminine

	masculine

	has_masculine

	young

	has_young

	diminutive

	has_diminutive

	augmentative

	has_augmentative

	anto_gradable

	anto_simple

	anto_converse

	ir_synonym

Sense Relations

	
wn.constants.SENSE_RELATIONS

	
	antonym

	also

	participle

	pertainym

	derivation

	domain_topic

	has_domain_topic

	domain_region

	has_domain_region

	exemplifies

	is_exemplified_by

	similar

	other

	feminine

	has_feminine

	masculine

	has_masculine

	young

	has_young

	diminutive

	has_diminutive

	augmentative

	has_augmentative

	anto_gradable

	anto_simple

	anto_converse

	simple_aspect_ip

	secondary_aspect_ip

	simple_aspect_pi

	secondary_aspect_pi

	
wn.constants.SENSE_SYNSET_RELATIONS

	
	domain_topic

	domain_region

	exemplifies

	other

	
wn.constants.REVERSE_RELATIONS

	{
 'hypernym': 'hyponym',
 'hyponym': 'hypernym',
 'instance_hypernym': 'instance_hyponym',
 'instance_hyponym': 'instance_hypernym',
 'antonym': 'antonym',
 'eq_synonym': 'eq_synonym',
 'similar': 'similar',
 'meronym': 'holonym',
 'holonym': 'meronym',
 'mero_location': 'holo_location',
 'holo_location': 'mero_location',
 'mero_member': 'holo_member',
 'holo_member': 'mero_member',
 'mero_part': 'holo_part',
 'holo_part': 'mero_part',
 'mero_portion': 'holo_portion',
 'holo_portion': 'mero_portion',
 'mero_substance': 'holo_substance',
 'holo_substance': 'mero_substance',
 'also': 'also',
 'state_of': 'be_in_state',
 'be_in_state': 'state_of',
 'causes': 'is_caused_by',
 'is_caused_by': 'causes',
 'subevent': 'is_subevent_of',
 'is_subevent_of': 'subevent',
 'manner_of': 'in_manner',
 'in_manner': 'manner_of',
 'attribute': 'attribute',
 'restricts': 'restricted_by',
 'restricted_by': 'restricts',
 'classifies': 'classified_by',
 'classified_by': 'classifies',
 'entails': 'is_entailed_by',
 'is_entailed_by': 'entails',
 'domain_topic': 'has_domain_topic',
 'has_domain_topic': 'domain_topic',
 'domain_region': 'has_domain_region',
 'has_domain_region': 'domain_region',
 'exemplifies': 'is_exemplified_by',
 'is_exemplified_by': 'exemplifies',
 'role': 'involved',
 'involved': 'role',
 'agent': 'involved_agent',
 'involved_agent': 'agent',
 'patient': 'involved_patient',
 'involved_patient': 'patient',
 'result': 'involved_result',
 'involved_result': 'result',
 'instrument': 'involved_instrument',
 'involved_instrument': 'instrument',
 'location': 'involved_location',
 'involved_location': 'location',
 'direction': 'involved_direction',
 'involved_direction': 'direction',
 'target_direction': 'involved_target_direction',
 'involved_target_direction': 'target_direction',
 'source_direction': 'involved_source_direction',
 'involved_source_direction': 'source_direction',
 'co_role': 'co_role',
 'co_agent_patient': 'co_patient_agent',
 'co_patient_agent': 'co_agent_patient',
 'co_agent_instrument': 'co_instrument_agent',
 'co_instrument_agent': 'co_agent_instrument',
 'co_agent_result': 'co_result_agent',
 'co_result_agent': 'co_agent_result',
 'co_patient_instrument': 'co_instrument_patient',
 'co_instrument_patient': 'co_patient_instrument',
 'co_result_instrument': 'co_instrument_result',
 'co_instrument_result': 'co_result_instrument',
 'pertainym': 'pertainym',
 'derivation': 'derivation',
 'simple_aspect_ip': 'simple_aspect_pi',
 'simple_aspect_pi': 'simple_aspect_ip',
 'secondary_aspect_ip': 'secondary_aspect_pi',
 'secondary_aspect_pi': 'secondary_aspect_ip',
 'feminine': 'has_feminine',
 'has_feminine': 'feminine',
 'masculine': 'has_masculine',
 'has_masculine': 'masculine',
 'young': 'has_young',
 'has_young': 'young',
 'diminutive': 'has_diminutive',
 'has_diminutive': 'diminutive',
 'augmentative': 'has_augmentative',
 'has_augmentative': 'augmentative',
 'anto_gradable': 'anto_gradable',
 'anto_simple': 'anto_simple',
 'anto_converse': 'anto_converse',
 'ir_synonym': 'ir_synonym',
}

Parts of Speech

	
wn.constants.PARTS_OF_SPEECH

	
	n – Noun

	v – Verb

	a – Adjective

	r – Adverb

	s – Adjective Satellite

	t – Phrase

	c – Conjunction

	p – Adposition

	x – Other

	u – Unknown

	
wn.constants.NOUN = 'n'

	

	
wn.constants.VERB = 'v'

	

	
wn.constants.ADJECTIVE = 'a'

	

	
wn.constants.ADJ

	Alias of ADJECTIVE

	
wn.constants.ADJECTIVE_SATELLITE = 's'

	

	
wn.constants.ADJ_SAT

	Alias of ADJECTIVE_SATELLITE

	
wn.constants.PHRASE = 't'

	

	
wn.constants.CONJUNCTION = 'c'

	

	
wn.constants.CONJ

	Alias of CONJUNCTION

	
wn.constants.ADPOSITION = 'p'

	

	
wn.constants.ADP = 'p'

	Alias of ADPOSITION

	
wn.constants.OTHER = 'x'

	

	
wn.constants.UNKNOWN = 'u'

	

Adjective Positions

	
wn.constants.ADJPOSITIONS

	
	a – Attributive

	ip – Immediate Postnominal

	p – Predicative

Lexicographer Files

	
wn.constants.LEXICOGRAPHER_FILES

	{
 'adj.all': 0,
 'adj.pert': 1,
 'adv.all': 2,
 'noun.Tops': 3,
 'noun.act': 4,
 'noun.animal': 5,
 'noun.artifact': 6,
 'noun.attribute': 7,
 'noun.body': 8,
 'noun.cognition': 9,
 'noun.communication': 10,
 'noun.event': 11,
 'noun.feeling': 12,
 'noun.food': 13,
 'noun.group': 14,
 'noun.location': 15,
 'noun.motive': 16,
 'noun.object': 17,
 'noun.person': 18,
 'noun.phenomenon': 19,
 'noun.plant': 20,
 'noun.possession': 21,
 'noun.process': 22,
 'noun.quantity': 23,
 'noun.relation': 24,
 'noun.shape': 25,
 'noun.state': 26,
 'noun.substance': 27,
 'noun.time': 28,
 'verb.body': 29,
 'verb.change': 30,
 'verb.cognition': 31,
 'verb.communication': 32,
 'verb.competition': 33,
 'verb.consumption': 34,
 'verb.contact': 35,
 'verb.creation': 36,
 'verb.emotion': 37,
 'verb.motion': 38,
 'verb.perception': 39,
 'verb.possession': 40,
 'verb.social': 41,
 'verb.stative': 42,
 'verb.weather': 43,
 'adj.ppl': 44,
}

 wn.ic

wn.ic

Information Content is a corpus-based metrics of synset or sense
specificity.

The mathematical formulae for information content are defined in
Formal Description, and the corresponding Python API function are
described in Calculating Information Content. These functions
require information content weights obtained either by computing them
from a corpus, or by loading
pre-computed weights from a file.

Note

The term information content can be ambiguous. It often, and most
accurately, refers to the result of the information_content()
function (\(\text{IC}(c)\) in the mathematical notation), but
is also sometimes used to refer to the corpus frequencies/weights
(\(\text{freq}(c)\) in the mathematical notation) returned by
load() or compute(), as these weights are the basis of
the value computed by information_content(). The Wn
documentation tries to consistently refer to former as the
information content value, or just information content, and the
latter as information content weights, or weights.

Formal Description

The Information Content (IC) of a concept (synset) is a measure of its
specificity computed from the wordnet's taxonomy structure and corpus
frequencies. It is defined by Resnik 1995 ([RES95]), following
information theory, as the negative log-probability of a concept:

\[\text{IC}(c) = -\log{p(c)}\]

A concept's probability is the empirical probability over a corpus:

\[p(c) = \frac{\text{freq}(c)}{N}\]

Here, \(N\) is the total count of words of the same category as
concept \(c\) ([RES95] only considered nouns) where each word has
some representation in the wordnet, and \(\text{freq}\) is defined
as the sum of corpus counts of words in \(\text{words}(c)\), which
is the set of words subsumed by concept \(c\):

\[\text{freq}(c) = \sum_{w \in \text{words}(c)}{\text{count}(w)}\]

It is common for \(\text{freq}\) to not contain actual frequencies
but instead weights distributed evenly among the synsets for a
word. These weights are calculated as the word frequency divided by
the number of synsets for the word:

\[\text{freq}_{\text{distributed}}(c)
= \sum_{w \in \text{words}(c)}{\frac{\text{count}(w)}{|\text{synsets}(w)|}}\]

	RES95(1,2)

	Resnik, Philip. "Using information content to evaluate
semantic similarity." In Proceedings of the 14th International
Joint Conference on Artificial Intelligence (IJCAI-95), Montreal,
Canada, pp. 448-453. 1995.

Example

In the Princeton WordNet 3.0 (hereafter WordNet, but note that the
equivalent lexicon in Wn is the OMW English Wordnet based on WordNet
3.0 with specifier omw-en:1.4), the frequency of a concept like
stone fruit is not just the number of occurrences of stone
fruit, but also includes the counts of the words for its hyponyms
(almond, olive, etc.) and other taxonomic descendants (Jordan
almond, green olive, etc.). The word almond has two synsets: one
for the fruit or nut, another for the plant. Thus, if the word
almond is encountered \(n\) times in a corpus, then the weight
(either the frequency \(n\) or distributed weight
\(\frac{n}{2}\)) is added to the total weights for both synsets
and to those of their ancestors, but not for descendant synsets, such
as for Jordan almond. The fruit/nut synset of almond has two
hypernym paths which converge on fruit:

	almond ⊃ stone fruit ⊃ fruit

	almond ⊃ nut ⊃ seed ⊃ fruit

The weight is added to each ancestor (stone fruit, nut,
seed, fruit, …) once. That is, the weight is not added to
the convergent ancestor for fruit twice, but only once.

Calculating Information Content

	
wn.ic.information_content(synset, freq)

	Calculate the Information Content value for a synset.

The information content of a synset is the negative log of the
synset probability (see synset_probability()).

	Parameters

	
	synset (wn.Synset) –

	freq (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]], float [https://docs.python.org/3/library/functions.html#float]]]) –

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
wn.ic.synset_probability(synset, freq)

	Calculate the synset probability.

The synset probability is defined as freq(ss)/N where freq(ss) is
the IC weight for the synset and N is the total IC weight for all
synsets with the same part of speech.

Note: this function is not generally used directly, but indirectly
through information_content().

	Parameters

	
	synset (wn.Synset) –

	freq (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]], float [https://docs.python.org/3/library/functions.html#float]]]) –

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Computing Corpus Weights

If pre-computed weights are not available for a wordnet or for some
domain, they can be computed given a corpus and a wordnet.

The corpus is an iterable of words. For large corpora it may help to
use a generator for this iterable, but the entire vocabulary (i.e.,
unique words and counts) will be held at once in memory. Multi-word
expressions are also possible if they exist in the wordnet. For
instance, WordNet has stone fruit, with a single space delimiting
the words, as an entry.

The wn.Wordnet object must be instantiated with a single
lexicon, although it may have expand-lexicons for relation
traversal. For best results, the wordnet should use a lemmatizer to
help it deal with inflected wordforms from running text.

	
wn.ic.compute(corpus, wordnet, distribute_weight=True, smoothing=1.0)

	Compute Information Content weights from a corpus.

	Parameters

	
	corpus (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – An iterable of string tokens. This is a flat list of
words and the order does not matter. Tokens may be single
words or multiple words separated by a space.

	wordnet (wn.Wordnet) – An instantiated wn.Wordnet object, used to
look up synsets from words.

	distribute_weight (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the counts for a word
are divided evenly among all synsets for the word.

	smoothing (float [https://docs.python.org/3/library/functions.html#float]) – The initial value given to each synset.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]], float [https://docs.python.org/3/library/functions.html#float]]]

Example

>>> import wn, wn.ic, wn.morphy
>>> ewn = wn.Wordnet('ewn:2020', lemmatizer=wn.morphy.morphy)
>>> freq = wn.ic.compute(["Dogs", "run", ".", "Cats", "sleep", "."], ewn)
>>> dog = ewn.synsets('dog', pos='n')[0]
>>> cat = ewn.synsets('cat', pos='n')[0]
>>> frog = ewn.synsets('frog', pos='n')[0]
>>> freq['n'][dog.id]
1.125
>>> freq['n'][cat.id]
1.1
>>> freq['n'][frog.id] # no occurrence; smoothing value only
1.0
>>> carnivore = dog.lowest_common_hypernyms(cat)[0]
>>> freq['n'][carnivore.id]
1.3250000000000002

Reading Pre-computed Information Content Files

The load() function reads pre-computed information content
weights files as used by the WordNet::Similarity [http://wn-similarity.sourceforge.net/] Perl module or the NLTK [http://www.nltk.org/] Python package. These files are computed for
a specific version of a wordnet using the synset offsets from the
WNDB [https://wordnet.princeton.edu/documentation/wndb5wn] format,
which Wn does not use. These offsets therefore must be converted into
an identifier that matches those used by the wordnet. By default,
load() uses the lexicon identifier from its wordnet argument
with synset offsets (padded with 0s to make 8 digits) and
parts-of-speech from the weights file to format an identifier, such as
omw-en-00001174-n. For wordnets that use a different identifier
scheme, the get_synset_id parameter of load() can be given a
callable created with wn.util.synset_id_formatter(). It can also
be given another callable with the same signature as shown below:

get_synset_id(*, offset: int, pos: str) -> str

When loading pre-computed information content files, it is recommended
to use the ones with smoothing (i.e., *-add1.dat or
*-resnik-add1.dat) to avoid math domain errors when computing the
information content value.

Warning

The weights files are only valid for the version of wordnet for
which they were created. Files created for WordNet 3.0 do not work
for WordNet 3.1 because the offsets used in its identifiers are
different, although the get_synset_id parameter of load()
could be given a function that performs a suitable mapping. Some
Open Multilingual Wordnet [https://github.com/omwn/omw-data]
wordnets use the WordNet 3.0 offsets in their identifiers and can
therefore technically use the weights, but this usage is
discouraged because the distributional properties of text in
another language and the structure of the other wordnet will not be
compatible with that of the English WordNet. For these cases, it is
recommended to compute new weights using compute().

	
wn.ic.load(source, wordnet, get_synset_id=None)

	Load an Information Content mapping from a file.

	Parameters

	
	source (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) – A path to an information content weights file.

	wordnet (wn.Wordnet) – A wn.Wordnet instance with synset
identifiers matching the offsets in the weights file.

	get_synset_id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – A callable that takes a synset offset and part
of speech and returns a synset ID valid in wordnet.

	Raises

	wn.Error – If wordnet does not have exactly one
 lexicon.

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]], float [https://docs.python.org/3/library/functions.html#float]]]

Example

>>> import wn, wn.ic
>>> pwn = wn.Wordnet('pwn:3.0')
>>> path = '~/nltk_data/corpora/wordnet_ic/ic-brown-resnik-add1.dat'
>>> freq = wn.ic.load(path, pwn)

 wn.lmf

wn.lmf

Reader for the Lexical Markup Framework (LMF) format.

	
wn.lmf.load(source, progress_handler=<class 'wn.util.ProgressBar'>)

	Load wordnets encoded in the WN-LMF format.

	Parameters

	
	source (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) – path to a WN-LMF file

	progress_handler (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Type [https://docs.python.org/3/library/typing.html#typing.Type][wn.util.ProgressHandler]]) –

	Return type

	wn.lmf.LexicalResource

	
wn.lmf.scan_lexicons(source)

	Scan source and return only the top-level lexicon info.

	Parameters

	source (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict]]

	
wn.lmf.is_lmf(source)

	Return True if source is a WN-LMF file.

	Parameters

	source (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

 wn.morphy

wn.morphy

A simple English lemmatizer that finds and removes known suffixes.

See also

The Princeton WordNet documentation [https://wordnet.princeton.edu/documentation/morphy7wn] describes
the original implementation of Morphy.

The Lemmatization and Normalization guide describes how Wn handles
lemmatization in general.

Initialized and Uninitialized Morphy

There are two ways of using Morphy in Wn: initialized and
uninitialized.

Unintialized Morphy is a simple callable that returns lemma
candidates for some given wordform. That is, the results might not
be valid lemmas, but this is not a problem in practice because
subsequent queries against the database will filter out the invalid
ones. This callable is obtained by creating a Morphy object
with no arguments:

>>> from wn import morphy
>>> m = morphy.Morphy()

As an uninitialized Morphy cannot predict which lemmas in the result
are valid, it always returns the original form and any transformations
it can find for each part of speech:

>>> m('lemmata', pos='n') # exceptional form
{'n': {'lemmata'}}
>>> m('lemmas', pos='n') # regular morphology with part-of-speech
{'n': {'lemma', 'lemmas'}}
>>> m('lemmas') # regular morphology for any part-of-speech
{None: {'lemmas'}, 'n': {'lemma'}, 'v': {'lemma'}}
>>> m('wolves') # invalid forms may be returned
{None: {'wolves'}, 'n': {'wolf', 'wolve'}, 'v': {'wolve', 'wolv'}}

This lemmatizer can also be used with a wn.Wordnet object to
expand queries:

>>> import wn
>>> ewn = wn.Wordnet('ewn:2020')
>>> ewn.words('lemmas')
[]
>>> ewn = wn.Wordnet('ewn:2020', lemmatizer=morphy.Morphy())
>>> ewn.words('lemmas')
[Word('ewn-lemma-n')]

An initialized Morphy is created with a wn.Wordnet object as
its argument. It then uses the wordnet to build lists of valid lemmas
and exceptional forms (this takes a few seconds). Once this is done,
it will only return lemmas it knows about:

>>> ewn = wn.Wordnet('ewn:2020')
>>> m = morphy.Morphy(ewn)
>>> m('lemmata', pos='n') # exceptional form
{'n': {'lemma'}}
>>> m('lemmas', pos='n') # regular morphology with part-of-speech
{'n': {'lemma'}}
>>> m('lemmas') # regular morphology for any part-of-speech
{'n': {'lemma'}}
>>> m('wolves') # invalid forms are pre-filtered
{'n': {'wolf'}}

In order to use an initialized Morphy lemmatizer with a
wn.Wordnet object, it must be assigned to the object after
creation:

>>> ewn = wn.Wordnet('ewn:2020') # default: lemmatizer=None
>>> ewn.words('lemmas')
[]
>>> ewn.lemmatizer = morphy.Morphy(ewn)
>>> ewn.words('lemmas')
[Word('ewn-lemma-n')]

There is little to no difference in the results obtained from a
wn.Wordnet object using an initialized or uninitialized
Morphy object, but there may be slightly different
performance profiles for future queries.

Default Morphy Lemmatizer

As a convenience, an uninitialized Morphy lemmatizer is provided in
this module via the morphy member.

	
wn.morphy.morphy

	A Morphy object created without a wn.Wordnet
object.

The Morphy Class

	
class wn.morphy.Morphy(wordnet=None)

	The Morphy lemmatizer class.

Objects of this class are callables that take a wordform and an
optional part of speech and return a dictionary mapping parts of
speech to lemmas. If objects of this class are not created with a
wn.Wordnet object, the returned lemmas may be invalid.

	Parameters

	wordnet (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][wn.Wordnet]) – optional wn.Wordnet instance

Example

>>> import wn
>>> from wn.morphy import Morphy
>>> ewn = wn.Wordnet('ewn:2020')
>>> m = Morphy(ewn)
>>> m('axes', pos='n')
{'n': {'axe', 'ax', 'axis'}}
>>> m('geese', pos='n')
{'n': {'goose'}}
>>> m('gooses')
{'n': {'goose'}, 'v': {'goose'}}
>>> m('goosing')
{'v': {'goose'}}

 wn.project

wn.project

Wordnet and ILI Packages and Collections

	
wn.project.iterpackages(path)

	Yield any wordnet or ILI packages found at path.

	The path argument can point to one of the following:
	
	a lexical resource file or ILI file

	a wordnet package directory

	a wordnet collection directory

	a tar archive containing one of the above

	a compressed (gzip or lzma) resource file or tar archive

	Parameters

	path (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) –

	Return type

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][wn.project.Package]

	
wn.project.is_package_directory(path)

	Return True if path appears to be a wordnet or ILI package.

	Parameters

	path (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
wn.project.is_collection_directory(path)

	Return True if path appears to be a wordnet collection.

	Parameters

	path (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) –

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class wn.project.Package(path)

	This class represents a wordnet or ILI package – a directory with
a resource file and optional metadata.

	Parameters

	path (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) –

	
resource_file()

	Return the path of the package's resource file.

	Return type

	pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	
readme()

	Return the path of the README file, or None if none exists.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]

	
license()

	Return the path of the license, or None if none exists.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]

	
citation()

	Return the path of the citation, or None if none exists.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]

	
class wn.project.Collection(path)

	This class represents a wordnet or ILI collection – a directory
with one or more wordnet/ILI packages and optional metadata.

	Parameters

	path (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) –

	
packages()

	Return the list of packages in the collection.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][wn.project.Package]

	
readme()

	Return the path of the README file, or None if none exists.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]

	
license()

	Return the path of the license, or None if none exists.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]

	
citation()

	Return the path of the citation, or None if none exists.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]

 wn.similarity

wn.similarity

Synset similarity metrics.

Taxonomy-based Metrics

The Path, Leacock-Chodorow, and Wu-Palmer similarity
metrics work by finding path distances in the hypernym/hyponym
taxonomy. As such, they are most useful when the synsets are, in fact,
arranged in a taxonomy. For the Princeton WordNet and derivative
wordnets, such as the Open English Wordnet [https://en-word.net] and OMW English Wordnet
based on WordNet 3.0 [https://github.com/omwn/omw-data] available to Wn, synsets for nouns and verbs
are arranged taxonomically: the nouns mostly form a single structure
with a single root while verbs form many smaller structures with many
roots. Synsets for the other parts of speech do not use
hypernym/hyponym relations at all. This situation may be different for
other wordnet projects or future versions of the English wordnets.

The similarity metrics tend to fail when the synsets are not connected
by some path. When the synsets are in different parts of speech, or
even in separate lexicons, this failure is acceptable and
expected. But for cases like the verbs in the Princeton WordNet, it
might be more useful to pretend that there is some unique root for all
verbs so as to create a path connecting any two of them. For this
purpose, the simulate_root parameter is available on the
path(), lch(), and wup() functions, where it is
passed on to calls to wn.Synset.shortest_path() and
wn.Synset.lowest_common_hypernyms(). Setting simulate_root to
True can, however, give surprising results if the words are
from a different lexicon. Currently, computing similarity for synsets
from a different part of speech raises an error.

Path Similarity

When \(p\) is the length of the shortest path between two synsets,
the path similarity is:

\[\frac{1}{p + 1}\]

The similarity score ranges between 0.0 and 1.0, where the higher the
score is, the more similar the synsets are. The score is 1.0 when a
synset is compared to itself, and 0.0 when there is no path between
the two synsets (i.e., the path distance is infinite).

	
wn.similarity.path(synset1, synset2, simulate_root=False)

	Return the Path similarity of synset1 and synset2.

	Parameters

	
	synset1 (wn.Synset) – The first synset to compare.

	synset2 (wn.Synset) – The second synset to compare.

	simulate_root (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, a fake root node connects
all other roots; default: False.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Example

>>> import wn
>>> from wn.similarity import path
>>> ewn = wn.Wordnet('ewn:2020')
>>> spatula = ewn.synsets('spatula')[0]
>>> path(spatula, ewn.synsets('pancake')[0])
0.058823529411764705
>>> path(spatula, ewn.synsets('utensil')[0])
0.2
>>> path(spatula, spatula)
1.0
>>> flip = ewn.synsets('flip', pos='v')[0]
>>> turn_over = ewn.synsets('turn over', pos='v')[0]
>>> path(flip, turn_over)
0.0
>>> path(flip, turn_over, simulate_root=True)
0.16666666666666666

Leacock-Chodorow Similarity

When \(p\) is the length of the shortest path between two synsets
and \(d\) is the maximum taxonomy depth, the Leacock-Chodorow
similarity is:

\[-\text{log}\left(\frac{p + 1}{2d}\right)\]

	
wn.similarity.lch(synset1, synset2, max_depth, simulate_root=False)

	Return the Leacock-Chodorow similarity between synset1 and synset2.

	Parameters

	
	synset1 (wn.Synset) – The first synset to compare.

	synset2 (wn.Synset) – The second synset to compare.

	max_depth (int [https://docs.python.org/3/library/functions.html#int]) – The taxonomy depth (see wn.taxonomy.taxonomy_depth())

	simulate_root (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, a fake root node connects
all other roots; default: False.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Example

>>> import wn, wn.taxonomy
>>> from wn.similarity import lch
>>> ewn = wn.Wordnet('ewn:2020')
>>> n_depth = wn.taxonomy.taxonomy_depth(ewn, 'n')
>>> spatula = ewn.synsets('spatula')[0]
>>> lch(spatula, ewn.synsets('pancake')[0], n_depth)
0.8043728156701697
>>> lch(spatula, ewn.synsets('utensil')[0], n_depth)
2.0281482472922856
>>> lch(spatula, spatula, n_depth)
3.6375861597263857
>>> v_depth = taxonomy.taxonomy_depth(ewn, 'v')
>>> flip = ewn.synsets('flip', pos='v')[0]
>>> turn_over = ewn.synsets('turn over', pos='v')[0]
>>> lch(flip, turn_over, v_depth, simulate_root=True)
1.3862943611198906

Wu-Palmer Similarity

When LCS is the lowest common hypernym (also called "least common
subsumer") between two synsets, \(i\) is the shortest path
distance from the first synset to LCS, \(j\) is the shortest
path distance from the second synset to LCS, and \(k\) is the
number of nodes (distance + 1) from LCS to the root node, then the
Wu-Palmer similarity is:

\[\frac{2k}{i + j + 2k}\]

	
wn.similarity.wup(synset1, synset2, simulate_root=False)

	Return the Wu-Palmer similarity of synset1 and synset2.

	Parameters

	
	synset1 (wn.Synset) – The first synset to compare.

	synset2 (wn.Synset) – The second synset to compare.

	simulate_root – When True, a fake root node connects
all other roots; default: False.

	Raises

	wn.Error – When no path connects the synset1 and synset2.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Example

>>> import wn
>>> from wn.similarity import wup
>>> ewn = wn.Wordnet('ewn:2020')
>>> spatula = ewn.synsets('spatula')[0]
>>> wup(spatula, ewn.synsets('pancake')[0])
0.2
>>> wup(spatula, ewn.synsets('utensil')[0])
0.8
>>> wup(spatula, spatula)
1.0
>>> flip = ewn.synsets('flip', pos='v')[0]
>>> turn_over = ewn.synsets('turn over', pos='v')[0]
>>> wup(flip, turn_over, simulate_root=True)
0.2857142857142857

Information Content-based Metrics

The Resnik, Jiang-Conrath, and Lin similarity metrics work
by computing the information content of the synsets and/or that of
their lowest common hypernyms. They therefore require information
content weights (see wn.ic), and the values returned
necessarily depend on the weights used.

Resnik Similarity

The Resnik similarity (Resnik 1995 [https://arxiv.org/pdf/cmp-lg/9511007.pdf]) is the maximum
information content value of the common subsumers (hypernym ancestors)
of the two synsets. Formally it is defined as follows, where
\(c_1\) and \(c_2\) are the two synsets being compared.

\[\text{max}_{c \in \text{S}(c_1, c_2)} \text{IC}(c)\]

Since a synset's information content is always equal or greater than
the information content of its hypernyms, \(S(c_1, c_2)\) above is
more efficiently computed using the lowest common hypernyms instead of
all common hypernyms.

	
wn.similarity.res(synset1, synset2, ic)

	Return the Resnik similarity between synset1 and synset2.

	Parameters

	
	synset1 (wn.Synset) – The first synset to compare.

	synset2 (wn.Synset) – The second synset to compare.

	ic (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]], float [https://docs.python.org/3/library/functions.html#float]]]) – Information Content weights.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Example

>>> import wn, wn.ic, wn.taxonomy
>>> from wn.similarity import res
>>> pwn = wn.Wordnet('pwn:3.0')
>>> ic = wn.ic.load('~/nltk_data/corpora/wordnet_ic/ic-brown.dat', pwn)
>>> spatula = pwn.synsets('spatula')[0]
>>> res(spatula, pwn.synsets('pancake')[0], ic)
0.8017591149538994
>>> res(spatula, pwn.synsets('utensil')[0], ic)
5.87738923441087

Jiang-Conrath Similarity

The Jiang-Conrath similarity metric (Jiang and Conrath, 1997 [https://www.aclweb.org/anthology/O97-1002.pdf]) combines the ideas
of the taxonomy-based and information content-based metrics. It is
defined as follows, where \(c_1\) and \(c_2\) are the two
synsets being compared and \(c_0\) is the lowest common hypernym
of the two with the highest information content weight:

\[\frac{1}{\text{IC}(c_1) + \text{IC}(c_2) - 2(\text{IC}(c_0))}\]

This equation is the simplified form given in the paper were several
parameterized terms are cancelled out because the full form is not
often used in practice.

There are two special cases:

	If the information content of \(c_0\), \(c_1\), and
\(c_2\) are all zero, the metric returns zero. This occurs when
both \(c_1\) and \(c_2\) are the root node, but it can also
occur if the synsets did not occur in the corpus and the smoothing
value was set to zero.

	Otherwise if \(c_1 + c_2 = 2c_0\), the metric returns
infinity. This occurs when the two synsets are the same, one is a
descendant of the other, etc., such that they have the same
frequency as each other and as their lowest common hypernym.

	
wn.similarity.jcn(synset1, synset2, ic)

	Return the Jiang-Conrath similarity of two synsets.

	Parameters

	
	synset1 (wn.Synset) – The first synset to compare.

	synset2 (wn.Synset) – The second synset to compare.

	ic (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]], float [https://docs.python.org/3/library/functions.html#float]]]) – Information Content weights.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Example

>>> import wn, wn.ic, wn.taxonomy
>>> from wn.similarity import jcn
>>> pwn = wn.Wordnet('pwn:3.0')
>>> ic = wn.ic.load('~/nltk_data/corpora/wordnet_ic/ic-brown.dat', pwn)
>>> spatula = pwn.synsets('spatula')[0]
>>> jcn(spatula, pwn.synsets('pancake')[0], ic)
0.04061799236354239
>>> jcn(spatula, pwn.synsets('utensil')[0], ic)
0.10794048564613007

Lin Similarity

Another formulation of information content-based similarity is the Lin
metric (Lin 1997 [https://www.aclweb.org/anthology/P97-1009.pdf]),
which is defined as follows, where \(c_1\) and \(c_2\) are the
two synsets being compared and \(c_0\) is the lowest common
hypernym with the highest information content weight:

\[\frac{2(\text{IC}(c_0))}{\text{IC}(c_1) + \text{IC}(c_0)}\]

One special case is if either synset has an information content value
of zero, in which case the metric returns zero.

	
wn.similarity.lin(synset1, synset2, ic)

	Return the Lin similarity of two synsets.

	Parameters

	
	synset1 (wn.Synset) – The first synset to compare.

	synset2 (wn.Synset) – The second synset to compare.

	ic (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]], float [https://docs.python.org/3/library/functions.html#float]]]) – Information Content weights.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Example

>>> import wn, wn.ic, wn.taxonomy
>>> from wn.similarity import lin
>>> pwn = wn.Wordnet('pwn:3.0')
>>> ic = wn.ic.load('~/nltk_data/corpora/wordnet_ic/ic-brown.dat', pwn)
>>> spatula = pwn.synsets('spatula')[0]
>>> lin(spatula, pwn.synsets('pancake')[0], ic)
0.061148956278604116
>>> lin(spatula, pwn.synsets('utensil')[0], ic)
0.5592415686750427

 wn.taxonomy

wn.taxonomy

Functions for working with hypernym/hyponym taxonomies.

Overview

Among the valid synset relations for wordnets (see
wn.constants.SYNSET_RELATIONS), those used for describing
is-a taxonomies [https://en.wikipedia.org/wiki/Taxonomy] are
given special treatment and they are generally the most
well-developed relations in any wordnet. Typically these are the
hypernym and hyponym relations, which encode is-a-type-of
relationships (e.g., a hermit crab is a type of decapod, which is
a type of crustacean, etc.). They also include instance_hypernym
and instance_hyponym, which encode is-an-instance-of
relationships (e.g., Oregon is an instance of American state).

The taxonomy forms a multiply-inheriting hierarchy with the synsets as
nodes. In the English wordnets, such as the Princeton WordNet and its
derivatives, nearly all nominal synsets form such a hierarchy with
single root node, while verbal synsets form many smaller hierarchies
without a common root. Other wordnets may have different properties,
but as many are based off of the Princeton WordNet, they tend to
follow this structure.

Functions to find paths within the taxonomies form the basis of all
wordnet similarity measures. For instance, the
Leacock-Chodorow Similarity measure uses both
shortest_path() and (indirectly) taxonomy_depth().

Wordnet-level Functions

Root and leaf synsets in the taxonomy are those with no ancestors
(hypernym, instance_hypernym, etc.) or hyponyms (hyponym,
instance_hyponym, etc.), respectively.

Finding root and leaf synsets

	
wn.taxonomy.roots(wordnet, pos=None)

	Return the list of root synsets in wordnet.

	Parameters

	
	wordnet (Wordnet) – The wordnet from which root synsets are found.

	pos (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – If given, only return synsets with the specified part of
speech.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][Synset]

Example

>>> import wn, wn.taxonomy
>>> ewn = wn.Wordnet('ewn:2020')
>>> len(wn.taxonomy.roots(ewn, pos='v'))
573

	
wn.taxonomy.leaves(wordnet, pos=None)

	Return the list of leaf synsets in wordnet.

	Parameters

	
	wordnet (Wordnet) – The wordnet from which leaf synsets are found.

	pos (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – If given, only return synsets with the specified part of
speech.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][Synset]

Example

>>> import wn, wn.taxonomy
>>> ewn = wn.Wordnet('ewn:2020')
>>> len(wn.taxonomy.leaves(ewn, pos='v'))
10525

Computing the taxonomy depth

The taxonomy depth is the maximum depth from a root node to a leaf
node within synsets for a particular part of speech.

	
wn.taxonomy.taxonomy_depth(wordnet, pos)

	Return the list of leaf synsets in wordnet.

	Parameters

	
	wordnet (Wordnet) – The wordnet for which the taxonomy depth will be
calculated.

	pos (str [https://docs.python.org/3/library/stdtypes.html#str]) – The part of speech for which the taxonomy depth will be
calculated.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Example

>>> import wn, wn.taxonomy
>>> ewn = wn.Wordnet('ewn:2020')
>>> wn.taxonomy.taxonomy_depth(ewn, 'n')
19

Synset-level Functions

	
wn.taxonomy.hypernym_paths(synset, simulate_root=False)

	Return the list of hypernym paths to a root synset.

	Parameters

	
	synset (Synset) – The starting synset for paths to a root.

	simulate_root (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, find the path to a simulated
root node.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][List [https://docs.python.org/3/library/typing.html#typing.List][Synset]]

Example

>>> import wn, wn.taxonomy
>>> dog = wn.synsets('dog', pos='n')[0]
>>> for path in wn.taxonomy.hypernym_paths(dog):
... for i, ss in enumerate(path):
... print(' ' * i, ss, ss.lemmas()[0])
...
 Synset('pwn-02083346-n') canine
 Synset('pwn-02075296-n') carnivore
 Synset('pwn-01886756-n') eutherian mammal
 Synset('pwn-01861778-n') mammalian
 Synset('pwn-01471682-n') craniate
 Synset('pwn-01466257-n') chordate
 Synset('pwn-00015388-n') animal
 Synset('pwn-00004475-n') organism
 Synset('pwn-00004258-n') animate thing
 Synset('pwn-00003553-n') unit
 Synset('pwn-00002684-n') object
 Synset('pwn-00001930-n') physical entity
 Synset('pwn-00001740-n') entity
 Synset('pwn-01317541-n') domesticated animal
 Synset('pwn-00015388-n') animal
 Synset('pwn-00004475-n') organism
 Synset('pwn-00004258-n') animate thing
 Synset('pwn-00003553-n') unit
 Synset('pwn-00002684-n') object
 Synset('pwn-00001930-n') physical entity
 Synset('pwn-00001740-n') entity

	
wn.taxonomy.min_depth(synset, simulate_root=False)

	Return the minimum taxonomy depth of the synset.

	Parameters

	
	synset (Synset) – The starting synset for paths to a root.

	simulate_root (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, find the depth to a
simulated root node.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Example

>>> import wn, wn.taxonomy
>>> dog = wn.synsets('dog', pos='n')[0]
>>> wn.taxonomy.min_depth(dog)
8

	
wn.taxonomy.max_depth(synset, simulate_root=False)

	Return the maximum taxonomy depth of the synset.

	Parameters

	
	synset (Synset) – The starting synset for paths to a root.

	simulate_root (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, find the depth to a
simulated root node.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Example

>>> import wn, wn.taxonomy
>>> dog = wn.synsets('dog', pos='n')[0]
>>> wn.taxonomy.max_depth(dog)
13

	
wn.taxonomy.shortest_path(synset, other, simulate_root=False)

	Return the shortest path from synset to the other synset.

	Parameters

	
	other (Synset) – endpoint synset of the path

	simulate_root (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, ensure any two synsets
are always connected by positing a fake root node

	synset (Synset) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][Synset]

Example

>>> import wn, wn.taxonomy
>>> dog = ewn.synsets('dog', pos='n')[0]
>>> squirrel = ewn.synsets('squirrel', pos='n')[0]
>>> for ss in wn.taxonomy.shortest_path(dog, squirrel):
... print(ss.lemmas())
...
['canine', 'canid']
['carnivore']
['eutherian mammal', 'placental', 'placental mammal', 'eutherian']
['rodent', 'gnawer']
['squirrel']

	
wn.taxonomy.common_hypernyms(synset, other, simulate_root=False)

	Return the common hypernyms for the current and other synsets.

	Parameters

	
	other (Synset) – synset that is a hyponym of any shared hypernyms

	simulate_root (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, ensure any two synsets
always share a hypernym by positing a fake root node

	synset (Synset) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][Synset]

Example

>>> import wn, wn.taxonomy
>>> dog = ewn.synsets('dog', pos='n')[0]
>>> squirrel = ewn.synsets('squirrel', pos='n')[0]
>>> for ss in wn.taxonomy.common_hypernyms(dog, squirrel):
... print(ss.lemmas())
...
['entity']
['physical entity']
['object', 'physical object']
['unit', 'whole']
['animate thing', 'living thing']
['organism', 'being']
['fauna', 'beast', 'animate being', 'brute', 'creature', 'animal']
['chordate']
['craniate', 'vertebrate']
['mammalian', 'mammal']
['eutherian mammal', 'placental', 'placental mammal', 'eutherian']

	
wn.taxonomy.lowest_common_hypernyms(synset, other, simulate_root=False)

	Return the common hypernyms furthest from the root.

	Parameters

	
	other (Synset) – synset that is a hyponym of any shared hypernyms

	simulate_root (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, ensure any two synsets
always share a hypernym by positing a fake root node

	synset (Synset) –

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][Synset]

Example

>>> import wn, wn.taxonomy
>>> dog = ewn.synsets('dog', pos='n')[0]
>>> squirrel = ewn.synsets('squirrel', pos='n')[0]
>>> len(wn.taxonomy.lowest_common_hypernyms(dog, squirrel))
1
>>> wn.taxonomy.lowest_common_hypernyms(dog, squirrel)[0].lemmas()
['eutherian mammal', 'placental', 'placental mammal', 'eutherian']

 wn.util

wn.util

Wn utility classes.

	
wn.util.synset_id_formatter(fmt='{prefix}-{offset:08}-{pos}', **kwargs)

	Return a function for formatting synset ids.

The fmt argument can be customized. It will be formatted using
any other keyword arguments given to this function and any given
to the resulting function. By default, the format string expects a
prefix string argument for the namespace (such as a lexicon
id), an offset integer argument (such as a WNDB offset), and a
pos string argument.

	Parameters

	
	fmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – A Python format string

	**kwargs – Keyword arguments for the format string.

	Return type

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

Example

>>> pwn_synset_id = synset_id_formatter(prefix='pwn')
>>> pwn_synset_id(offset=1174, pos='n')
'pwn-00001174-n'

	
class wn.util.ProgressHandler(*, message='', count=0, total=0, refresh_interval=0, unit='', status='', file=<_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>)

	An interface for updating progress in long-running processes.

Long-running processes in Wn, such as wn.download() and
wn.add(), call to a progress handler object as they go. The
default progress handler used by Wn is ProgressBar, which
updates progress by formatting and printing a textual bar to
stderr. The ProgressHandler class may be used directly,
which does nothing, or users may create their own subclasses for,
e.g., updating a GUI or some other handler.

The initialization parameters, except for file, are stored in
a kwargs member and may be updated after the handler is
created through the set() method. The update() method
is the primary way a counter is updated. The flash() method
is sometimes called for simple messages. When the process is
complete, the close() method is called, optionally with a
message.

	Parameters

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	count (int [https://docs.python.org/3/library/functions.html#int]) –

	total (int [https://docs.python.org/3/library/functions.html#int]) –

	refresh_interval (int [https://docs.python.org/3/library/functions.html#int]) –

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	status (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	file (TextIO [https://docs.python.org/3/library/typing.html#typing.TextIO]) –

	
kwargs

	A dictionary storing the updateable parameters for the progress
handler. The keys are:

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – a generic message or name

	count (int [https://docs.python.org/3/library/functions.html#int]) – the current progress counter

	total (int [https://docs.python.org/3/library/functions.html#int]) – the expected final value of the counter

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – the unit of measurement

	status (str [https://docs.python.org/3/library/stdtypes.html#str]) – the current status of the process

	
close()

	Close the progress handler.

This might be useful for closing file handles or cleaning up
resources.

	Return type

	None

	
flash(message)

	Issue a message unrelated to the current counter.

This may be useful for multi-stage processes to indicate the
move to a new stage, or to log unexpected situations.

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
set(**kwargs)

	Update progress handler parameters.

Calling this method also runs update() with an increment
of 0, which causes a refresh of any indicator without changing
the counter.

	Return type

	None

	
update(n=1, force=False)

	Update the counter with the increment value n.

This method should update the count key of kwargs
with the increment value n. After this, it is expected to
update some user-facing progress indicator.

If force is True, any indicator will be refreshed
regardless of the value of the refresh interval.

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) –

	force (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

	
class wn.util.ProgressBar(*, message='', count=0, total=0, refresh_interval=0, unit='', status='', file=<_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>)

	A ProgressHandler subclass for printing a progress bar.

Example

>>> p = ProgressBar(message='Progress: ', total=10, unit=' units')
>>> p.update(3)
Progress: [#########] (3/10 units)

See format() for a description of how the progress bar is
formatted.

	Parameters

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	count (int [https://docs.python.org/3/library/functions.html#int]) –

	total (int [https://docs.python.org/3/library/functions.html#int]) –

	refresh_interval (int [https://docs.python.org/3/library/functions.html#int]) –

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	status (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	file (TextIO [https://docs.python.org/3/library/typing.html#typing.TextIO]) –

	
FMT = '\r{message}{bar}{counter}{status}'

	The default formatting template.

	
close()

	Print a newline so the last printed bar remains on screen.

	Return type

	None

	
flash(message)

	Overwrite the progress bar with message.

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	None

	
format()

	Format and return the progress bar.

The bar is is formatted according to FMT, using
variables from kwargs and two computed variables:

	bar: visualization of the progress bar, empty when
total is 0

	counter: display of count, total, and units

>>> p = ProgressBar(message='Progress', count=2, total=10, unit='K')
>>> p.format()
'\rProgress [######] (2/10K) '
>>> p = ProgressBar(count=2, status='Counting...')
>>> p.format()
'\r (2) Counting...'

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
update(n=1, force=False)

	Increment the count by n and print the reformatted bar.

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) –

	force (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type

	None

 wn.validate

wn.validate

Wordnet lexicon validation.

This module is for checking whether the the contents of a lexicon are
valid according to a series of checks. Those checks are:

	Code

	Message

	E101

	ID is not unique within the lexicon.

	W201

	Lexical entry has no senses.

	W202

	Redundant sense between lexical entry and synset.

	W203

	Redundant lexical entry with the same lemma and synset.

	E204

	Synset of sense is missing.

	W301

	Synset is empty (not associated with any lexical entries).

	W302

	ILI is repeated across synsets.

	W303

	Proposed ILI is missing a definition.

	W304

	Existing ILI has a spurious definition.

	E401

	Relation target is missing or invalid.

	W402

	Relation type is invalid for the source and target.

	W403

	Redundant relation between source and target.

	W404

	Reverse relation is missing.

	W501

	Synset's part-of-speech is different from its hypernym's.

	W502

	Relation is a self-loop.

	
wn.validate.validate(lex, select=('E', 'W'), progress_handler=<class 'wn.util.ProgressBar'>)

	Check lex for validity and return a report of the results.

The select argument is a sequence of check codes (e.g.,
E101) or categories (E or W).

The progress_handler parameter takes a subclass of
wn.util.ProgressHandler. An instance of the class will be
created, used, and closed by this function.

	Parameters

	
	lex (Union [https://docs.python.org/3/library/typing.html#typing.Union][wn.lmf.Lexicon, wn.lmf.LexiconExtension]) –

	select (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	progress_handler (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Type [https://docs.python.org/3/library/typing.html#typing.Type][wn.util.ProgressHandler]]) –

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict]]]]]

 wn.web

wn.web

This module provides a RESTful API with JSON:API [https://jsonapi.org] responses to
queries against a Wn database. This API implements the primary queries
of the Python API (see Primary Queries). For instance, to
search all words in the ewn:2020 lexicon with the form jet and
part-of-speech v, we can perform the following query:

/lexicons/ewn:2020/words?form=jet&pos=v

This query would return the following response:

{
 "data": [
 {
 "id": "ewn-jet-v",
 "type": "word",
 "attributes": {
 "pos": "v",
 "lemma": "jet",
 "forms": ["jet", "jetted", "jetting"]
 },
 "links": {
 "self": "http://example.com/lexicons/ewn:2020/words/ewn-jet-v"
 },
 "relationships": {
 "senses": {
 "links": {"related": "http://example.com/lexicons/ewn:2020/words/ewn-jet-v/senses"}
 },
 "synsets": {
 "data": [
 {"type": "synset", "id": "ewn-01518922-v"},
 {"type": "synset", "id": "ewn-01946093-v"}
]
 },
 "lexicon": {
 "links": {"related": "http://example.com/lexicons/ewn:2020"}
 }
 },
 "included": [
 {
 "id": "ewn-01518922-v",
 "type": "synset",
 "attributes": {"pos": "v", "ili": "i29306"},
 "links": {"self": "http://example.com/lexicons/ewn:2020/synsets/ewn-01518922-v"}
 },
 {
 "id": "ewn-01946093-v",
 "type": "synset",
 "attributes": {"pos": "v", "ili": "i31432"},
 "links": {"self": "http://example.com/lexicons/ewn:2020/synsets/ewn-01946093-v"}
 }
]
 }
],
 "meta": {"total": 1}
}

Currently, only GET requests are handled.

Installing Dependencies

By default, Wn does not install the requirements needed for this
module. Install them with the [web] extra:

$ pip install wn[web]

Running and Deploying the Server

This module does not provide an ASGI server, so one will need to be
installed and ran separately. Any ASGI-compliant server should
work.

For example, the Uvicorn [https://www.uvicorn.org/] server may be
used directly for local development, optionally with the --reload
option for hot reloading:

$ uvicorn --reload wn.web:app

For production, see Uvicorn's documentation about deployment [https://www.uvicorn.org/deployment/].

Requests: API Endpoints

The module provides the following endpoints:

	Endpoint

	Description

	/words

	List words in all available lexicons

	/senses

	List senses in all available lexicons

	/synsets

	List synsets in all available lexicons

	/lexicons

	List available lexicons

	/lexicons/:lex

	Get lexicon with specifier :lex

	/lexicons/:lex/words

	List words for lexicon with specifier :lex

	/lexicons/:lex/words/:id/senses

	List senses for word :id in lexicon :lex

	/lexicons/:lex/words/:id

	Get word with ID :id in lexicon :lex

	/lexicons/:lex/senses

	List senses for lexicon with specifier :lex

	/lexicons/:lex/senses/:id

	Get sense with ID :id in lexicon :lex

	/lexicons/:lex/synsets

	List synsets for lexicon with specifier :lex

	/lexicons/:lex/synsets/:id

	Get synset with ID :id in lexicon :lex

	/lexicons/:lex/synsets/:id/members

	Get member senses for synset :id in lexicon :lex

Requests: Query Parameters

lang

Specifies the language in BCP 47 [https://en.wikipedia.org/wiki/IETF_language_tag] of the lexicon(s) from which
results are returned.

Example:

/words?lang=fr

Valid for:

/lexicons
/words
/senses
/synsets

form

Specifies the word form of the objects that are returned.

Example:

/words?form=chat

Valid for:

/words
/senses
/synsets
/lexicon/:lex/words
/lexicon/:lex/senses
/lexicon/:lex/synsets

pos

Specifies the part-of-speech of the objects that are returned. Valid
values are given in Parts of Speech.

Example:

/words?pos=v

Valid for:

/words
/senses
/synsets
/lexicon/:lex/words
/lexicon/:lex/senses
/lexicon/:lex/synsets

ili

Specifies the interlingual index of a synset.

Example:

/synsets?ili=i57031

Valid for:

/synsets
/lexicon/:lex/synsets

page[offset] and page[limit]

Used for pagination: page[offset] specifies the starting index of
a set of results, and page[limit] specifies how many results from
the offset will be returned.

Example:

/words?page[offset]=150

Valid for:

/words
/senses
/synsets
/lexicon/:lex/words
/lexicon/:lex/senses
/lexicon/:lex/synsets

Responses

Responses are JSON data following the JSON:API [https://jsonapi.org] specification. A
full description of JSON:API is left to the linked specification, but
a brief walkthrough is provided here. First, the top-level structure
of "to-one" responses (e.g., getting a single synset) is:

{
 "data": { ... }, // primary response data as a JSON object
 "meta": { ... } // metadata for the response
}

For "to-many" responses (e.g., getting a list of matching synsets), it
is the same as above except the data key maps to an array and it
includes pagination links:

{
 "data": [{ ... }, ...], // primary response data as an array of objects
 "links": { ... }, // pagination links
 "meta": { ... } // metadata; e.g., total number of results
}

Each JSON:API resource object (the primary data given by the
data key) has the following structure:

{
 "id": "...", // Lexicon specifier or entity ID
 "type": "...", // "lexicon", "word", "sense", or "synset"
 "attributes": { ... }, // Basic resource information
 "links": { "self": ... }, // URL for this specific resource
 "relationships": { ... }, // Word senses, synset members, other relations
 "included": [...], // Data for related resources
}

Lexicons

{
 "id": "ewn:2020",
 "type": "lexicon",
 "attributes": {
 "version": "2020",
 "label": "English WordNet",
 "language": "en",
 "license": "https://creativecommons.org/licenses/by/4.0/"
 },
 "links": {"self": "http://example.com/lexicons/ewn:2020"},
 "relationships": {
 "words": {"links": {"related": "http://example.com/lexicons/ewn:2020/words"}},
 "synsets": {"links": {"related": "http://example.com/lexicons/ewn:2020/synsets"}},
 "senses": {"links": {"related": "http://example.com/lexicons/ewn:2020/senses"}}
 }
}

Words

{
 "id": "ewn-brick-v",
 "type": "word",
 "attributes": {"pos": "v", "lemma": "brick", "forms": ["brick"]},
 "links": {"self": "http://example.com/lexicons/ewn:2020/words/ewn-brick-v"},
 "relationships": {
 "senses": {"links": {"related": "http://example.com/lexicons/ewn:2020/words/ewn-brick-v/senses"}},
 "synsets": {"data": [{"type": "synset", "id": "ewn-90011761-v"}]},
 "lexicon": {"links": {"related": "http://example.com/lexicons/ewn:2020"}}
 },
 "included": [
 {
 "id": "ewn-90011761-v",
 "type": "synset",
 "attributes": {"pos": "v", "ili": null},
 "links": {"self": "http://example.com/lexicons/ewn:2020/synsets/ewn-90011761-v"}
 }
]
}

Senses

{
 "id": "ewn-explain-v-00941308-01",
 "type": "sense",
 "links": {"self": "http://example.com/lexicons/ewn:2020/senses/ewn-explain-v-00941308-01"},
 "relationships": {
 "word": {"links": {"related": "http://example.com/lexicons/ewn:2020/words/ewn-explain-v"}},
 "synset": {"links": {"related": "http://example.com/lexicons/ewn:2020/synsets/ewn-00941308-v"}},
 "lexicon": {"links": {"related": "http://example.com/lexicons/ewn:2020"}},
 "derivation": {
 "data": [
 {"type": "sense", "id": "ewn-explanatory-s-01327635-01"},
 {"type": "sense", "id": "ewn-explanation-n-07247081-01"}
]
 }
 },
 "included": [
 {
 "id": "ewn-explanatory-s-01327635-01",
 "type": "sense",
 "links": {"self": "http://example.com/lexicons/ewn:2020/senses/ewn-explanatory-s-01327635-01"}
 },
 {
 "id": "ewn-explanation-n-07247081-01",
 "type": "sense",
 "links": {"self": "http://example.com/lexicons/ewn:2020/senses/ewn-explanation-n-07247081-01"}
 }
]
}

Synsets

{
 "id": "ewn-03204585-n",
 "type": "synset",
 "attributes": {"pos": "n", "ili": "i52917"},
 "links": {"self": "http://example.com/lexicons/ewn:2020/synsets/ewn-03204585-n"},
 "relationships": {
 "members": {"links": {"related": "http://example.com/lexicons/ewn:2020/synsets/ewn-03204585-n/members"}},
 "words": {
 "data": [
 {"type": "word", "id": "ewn-dory-n"},
 {"type": "word", "id": "ewn-rowboat-n"},
 {"type": "word", "id": "ewn-dinghy-n"}
]
 },
 "lexicon": {"links": {"related": "http://example.com/lexicons/ewn:2020"}},
 "hypernym": {"data": [{"type": "synset", "id": "ewn-04252125-n"}]},
 "mero_part": {
 "data": [
 {"type": "synset", "id": "ewn-03911849-n"},
 {"type": "synset", "id": "ewn-04439177-n"}
]
 },
 "hyponym": {
 "data": [
 {"type": "synset", "id": "ewn-04122550-n"},
 {"type": "synset", "id": "ewn-04584425-n"}
]
 }
 },
 "included": [
 {
 "id": "ewn-dory-n",
 "type": "word",
 "attributes": {"pos": "n", "lemma": "dory", "forms": ["dory"]},
 "links": {"self": "http://example.com/lexicons/ewn:2020/words/ewn-dory-n"}
 },
 {
 "id": "ewn-rowboat-n",
 "type": "word",
 "attributes": {"pos": "n", "lemma": "rowboat", "forms": ["rowboat"]},
 "links": {"self": "http://example.com/lexicons/ewn:2020/words/ewn-rowboat-n"}
 },
 {
 "id": "ewn-dinghy-n",
 "type": "word",
 "attributes": {"pos": "n", "lemma": "dinghy", "forms": ["dinghy"]},
 "links": {"self": "http://example.com/lexicons/ewn:2020/words/ewn-dinghy-n"}
 },
 {
 "id": "ewn-04252125-n",
 "type": "synset",
 "attributes": {"pos": "n", "ili": "i59107"},
 "links": {"self": "http://example.com/lexicons/ewn:2020/synsets/ewn-04252125-n"}
 },
 {
 "id": "ewn-03911849-n",
 "type": "synset",
 "attributes": {"pos": "n", "ili": "i57094"},
 "links": {"self": "http://example.com/lexicons/ewn:2020/synsets/ewn-03911849-n"}
 },
 {
 "id": "ewn-04439177-n",
 "type": "synset",
 "attributes": {"pos": "n", "ili": "i60240"},
 "links": {"self": "http://example.com/lexicons/ewn:2020/synsets/ewn-04439177-n"}
 },
 {
 "id": "ewn-04122550-n",
 "type": "synset",
 "attributes": {"pos": "n", "ili": "i58319"},
 "links": {"self": "http://example.com/lexicons/ewn:2020/synsets/ewn-04122550-n"}
 },
 {
 "id": "ewn-04584425-n",
 "type": "synset",
 "attributes": {"pos": "n", "ili": "i61103"},
 "links": {"self": "http://example.com/lexicons/ewn:2020/synsets/ewn-04584425-n"}
 }
]
}

 Python Module Index

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wn	

 	
 	
 wn.constants	

 	
 	
 wn.ic	

 	
 	
 wn.lmf	

 	
 	
 wn.morphy	

 	
 	
 wn.project	

 	
 	
 wn.similarity	

 	
 	
 wn.taxonomy	

 	
 	
 wn.util	

 	
 	
 wn.validate	

 Index

Index

 Symbols
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	
 	
 --dir

 	command line option

 	
 --index

 	command line option

 	
 --lang

 	command line option

 	
 --lexicon

 	command line option

 	
 --no-add

 	command line option

 	
 	
 --output-file

 	command line option

 	
 --select

 	command line option

 	
 -d

 	command line option

 	
 -l

 	command line option

A

 	
 	add() (in module wn)

 	add_project() (wn._config.WNConfig method)

 	add_project_version() (wn._config.WNConfig method)

 	ADJ (in module wn.constants)

 	ADJ_SAT (in module wn.constants)

 	ADJECTIVE (in module wn.constants)

 	
 	ADJECTIVE_SATELLITE (in module wn.constants)

 	adjposition() (wn.Sense method)

 	ADJPOSITIONS (in module wn.constants)

 	ADP (in module wn.constants)

 	ADPOSITION (in module wn.constants)

 	allow_multithreading (wn._config.WNConfig attribute)

 	audio (wn.Pronunciation attribute)

C

 	
 	category (wn.Tag attribute)

 	citation (wn.Lexicon attribute)

 	citation() (wn.project.Collection method)

 	(wn.project.Package method)

 	close() (wn.util.ProgressBar method)

 	(wn.util.ProgressHandler method)

 	closure() (wn.Sense method)

 	(wn.Synset method)

 	Collection (class in wn.project)

 	
 command line option

 	--dir

 	--index

 	--lang

 	--lexicon

 	--no-add

 	--output-file

 	--select

 	-d

 	-l

 	
 	common_hypernyms() (in module wn.taxonomy)

 	(wn.Synset method)

 	compute() (in module wn.ic)

 	config (in module wn)

 	CONJ (in module wn.constants)

 	CONJUNCTION (in module wn.constants)

 	Count (class in wn)

 	counts() (wn.Sense method)

D

 	
 	data_directory (wn._config.WNConfig attribute)

 	database_path (wn._config.WNConfig attribute)

 	DatabaseError

 	definition() (wn.ILI method)

 	(wn.Synset method)

 	
 	derived_words() (wn.Word method)

 	describe() (wn.Lexicon method)

 	(wn.Wordnet method)

 	download() (in module wn)

 	downloads_directory (wn._config.WNConfig attribute)

E

 	
 	email (wn.Lexicon attribute)

 	Error

 	examples() (wn.Sense method)

 	(wn.Synset method)

 	
 	expanded_lexicons() (wn.Wordnet method)

 	export() (in module wn)

 	extends() (wn.Lexicon method)

 	extensions() (wn.Lexicon method)

F

 	
 	flash() (wn.util.ProgressBar method)

 	(wn.util.ProgressHandler method)

 	FMT (wn.util.ProgressBar attribute)

 	
 	Form (class in wn)

 	format() (wn.util.ProgressBar method)

 	forms() (wn.Word method)

 	frames() (wn.Sense method)

G

 	
 	get_cache_path() (wn._config.WNConfig method)

 	get_project_info() (wn._config.WNConfig method)

 	
 	get_related() (wn.Sense method)

 	(wn.Synset method)

 	get_related_synsets() (wn.Sense method)

H

 	
 	holonyms() (wn.Synset method)

 	hypernym_paths() (in module wn.taxonomy)

 	(wn.Synset method)

 	
 	hypernyms() (wn.Synset method)

 	hyponyms() (wn.Synset method)

I

 	
 	id (wn.ILI attribute)

 	(wn.Lexicon attribute)

 	(wn.Sense attribute)

 	(wn.Synset attribute)

 	(wn.Word attribute)

 	ILI (class in wn)

 	ili (wn.Synset attribute)

 	ili() (in module wn)

 	(wn.Wordnet method)

 	
 	ilis() (in module wn)

 	(wn.Wordnet method)

 	information_content() (in module wn.ic)

 	is_collection_directory() (in module wn.project)

 	is_lmf() (in module wn.lmf)

 	is_package_directory() (in module wn.project)

 	iterpackages() (in module wn.project)

J

 	
 	jcn() (in module wn.similarity)

K

 	
 	kwargs (wn.util.ProgressHandler attribute)

L

 	
 	label (wn.Lexicon attribute)

 	language (wn.Lexicon attribute)

 	lch() (in module wn.similarity)

 	leaves() (in module wn.taxonomy)

 	lemma() (wn.Word method)

 	lemmas() (wn.Synset method)

 	lemmatizer (wn.Wordnet attribute)

 	lexfile() (wn.Synset method)

 	lexicalized() (wn.Sense method)

 	(wn.Synset method)

 	LEXICOGRAPHER_FILES (in module wn.constants)

 	Lexicon (class in wn)

 	
 	lexicons() (in module wn)

 	(wn.Wordnet method)

 	license (wn.Lexicon attribute)

 	license() (wn.project.Collection method)

 	(wn.project.Package method)

 	lin() (in module wn.similarity)

 	load() (in module wn.ic)

 	(in module wn.lmf)

 	load_index() (wn._config.WNConfig method)

 	logo (wn.Lexicon attribute)

 	lowest_common_hypernyms() (in module wn.taxonomy)

 	(wn.Synset method)

M

 	
 	max_depth() (in module wn.taxonomy)

 	(wn.Synset method)

 	meronyms() (wn.Synset method)

 	metadata() (wn.Count method)

 	(wn.ILI method)

 	(wn.Lexicon method)

 	(wn.Sense method)

 	(wn.Synset method)

 	(wn.Word method)

 	min_depth() (in module wn.taxonomy)

 	(wn.Synset method)

 	modified() (wn.Lexicon method)

 	
 	
 module

 	wn

 	wn.constants

 	wn.ic

 	wn.lmf

 	wn.morphy

 	wn.project

 	wn.similarity

 	wn.taxonomy

 	wn.util

 	wn.validate

 	Morphy (class in wn.morphy)

 	morphy (in module wn.morphy)

N

 	
 	notation (wn.Pronunciation attribute)

 	
 	NOUN (in module wn.constants)

O

 	
 	OTHER (in module wn.constants)

P

 	
 	Package (class in wn.project)

 	packages() (wn.project.Collection method)

 	PARTS_OF_SPEECH (in module wn.constants)

 	path() (in module wn.similarity)

 	phonemic (wn.Pronunciation attribute)

 	PHRASE (in module wn.constants)

 	
 	pos (wn.Synset attribute)

 	(wn.Word attribute)

 	ProgressBar (class in wn.util)

 	ProgressHandler (class in wn.util)

 	projects() (in module wn)

 	Pronunciation (class in wn)

 	pronunciations() (wn.Form method)

R

 	
 	readme() (wn.project.Collection method)

 	(wn.project.Package method)

 	relation_paths() (wn.Sense method)

 	(wn.Synset method)

 	relations() (wn.Sense method)

 	(wn.Synset method)

 	
 	remove() (in module wn)

 	requires() (wn.Lexicon method)

 	res() (in module wn.similarity)

 	resource_file() (wn.project.Package method)

 	REVERSE_RELATIONS (in module wn.constants)

 	roots() (in module wn.taxonomy)

S

 	
 	scan_lexicons() (in module wn.lmf)

 	script (wn.Form attribute)

 	Sense (class in wn)

 	sense() (in module wn)

 	(wn.Wordnet method)

 	SENSE_RELATIONS (in module wn.constants)

 	SENSE_SYNSET_RELATIONS (in module wn.constants)

 	senses() (in module wn)

 	(wn.Synset method)

 	(wn.Word method)

 	(wn.Wordnet method)

 	set() (wn.util.ProgressHandler method)

 	shortest_path() (in module wn.taxonomy)

 	(wn.Synset method)

 	
 	specifier() (wn.Lexicon method)

 	status (wn.ILI attribute)

 	Synset (class in wn)

 	synset() (in module wn)

 	(wn.Sense method)

 	(wn.Wordnet method)

 	synset_id_formatter() (in module wn.util)

 	synset_probability() (in module wn.ic)

 	SYNSET_RELATIONS (in module wn.constants)

 	synsets() (in module wn)

 	(wn.Word method)

 	(wn.Wordnet method)

T

 	
 	Tag (class in wn)

 	tag (wn.Tag attribute)

 	tags() (wn.Form method)

 	
 	taxonomy_depth() (in module wn.taxonomy)

 	translate() (wn.Sense method)

 	(wn.Synset method)

 	(wn.Word method)

U

 	
 	UNKNOWN (in module wn.constants)

 	update() (wn._config.WNConfig method)

 	(wn.util.ProgressBar method)

 	(wn.util.ProgressHandler method)

 	
 	url (wn.Lexicon attribute)

V

 	
 	validate() (in module wn.validate)

 	value (wn.Pronunciation attribute)

 	
 	variety (wn.Pronunciation attribute)

 	VERB (in module wn.constants)

 	version (wn.Lexicon attribute)

W

 	
 	
 wn

 	module

 	
 wn.constants

 	module

 	
 wn.ic

 	module

 	
 wn.lmf

 	module

 	
 wn.morphy

 	module

 	
 wn.project

 	module

 	
 wn.similarity

 	module

 	
 wn.taxonomy

 	module

 	
 	
 wn.util

 	module

 	
 wn.validate

 	module

 	WNConfig (class in wn._config)

 	WnWarning

 	Word (class in wn)

 	word() (in module wn)

 	(wn.Sense method)

 	(wn.Wordnet method)

 	Wordnet (class in wn)

 	words() (in module wn)

 	(wn.Synset method)

 	(wn.Wordnet method)

 	wup() (in module wn.similarity)

_static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Wn Documentation

 		
 Installation and Configuration

 		
 Installing from PyPI

 		
 The Data Directory

 		
 Configuration

 		
 Installing From Source

 		
 Command Line Interface

 		
 Global Options

 		
 Subcommands

 		
 download

 		
 lexicons

 		
 projects

 		
 validate

 		
 FAQ

 		
 Is Wn related to the NLTK's nltk.corpus.wordnet module?

 		
 Is Wn compatible with the NLTK's module?

 		
 Where are the Lemma objects? What are Word and Sense objects?

 		
 Where is the Princeton WordNet data?

 		
 Why don't all wordnets share the same synsets?

 		
 Why does Wn's database get so big?

 		
 Working with Lexicons

 		
 Terminology

 		
 Lexicon and Project Specifiers

 		
 Downloading Lexicons

 		
 Adding Local Lexicons

 		
 Listing Installed Lexicons

 		
 Removing Lexicons

 		
 WN-LMF Files, Packages, and Collections

 		
 WN-LMF XML Files

 		
 WN-LMF Packages

 		
 WN-LMF Collections

 		
 Basic Usage

 		
 Primary Queries

 		
 Searching for Words

 		
 Searching for Senses

 		
 Searching for Synsets

 		
 Secondary Queries

 		
 Exploring Words

 		
 Exploring Senses

 		
 Exploring Synsets

 		
 Filtering by Language

 		
 Filtering by Lexicon

 		
 Interlingual Queries

 		
 What are Interlingual Indices?

 		
 Using Interlingual Indices

 		
 Translating Words, Senses, and Synsets

 		
 Cross-lingual Relation Traversal

 		
 The Structure of a Wordnet

 		
 Words, Senses, and Synsets

 		
 Synset Relations

 		
 Sense Relations

 		
 Other Information

 		
 Lemmatization and Normalization

 		
 Lemmatization

 		
 Lemmatization Functions

 		
 Querying With Lemmatization

 		
 Querying Without Lemmatization

 		
 Alternative Forms in the Database

 		
 Normalization

 		
 Normalization Functions

 		
 Querying With Normalization

 		
 Querying Without Normalization

 		
 Migrating from the NLTK

 		
 Overview

 		
 Equivalent Operations

 		
 Primary Queries

 		
 Synsets – Basic

 		
 Synsets – Relations

 		
 Synsets – Taxonomic Structure

